Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from huggingface_hub import HfApi, HfFolder, HfApi, ModelCard, whoami
|
| 4 |
+
from huggingface_hub import InferenceClient # Use InferenceClient
|
| 5 |
+
import io
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
# --- Configuration (Simplified for Spaces) ---
|
| 9 |
+
|
| 10 |
+
# No need for API token if running *within* a Space
|
| 11 |
+
# The Space's environment will handle authentication
|
| 12 |
+
# The model ID is implicitly available if the Space is built around that model
|
| 13 |
+
|
| 14 |
+
# --- Image Encoding ---
|
| 15 |
+
def encode_image(image):
|
| 16 |
+
buffered = io.BytesIO()
|
| 17 |
+
image.save(buffered, format="JPEG")
|
| 18 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 19 |
+
return img_str
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# --- Model Interaction (using InferenceClient) ---
|
| 23 |
+
|
| 24 |
+
def analyze_image_with_maira(image):
|
| 25 |
+
"""Analyzes the image using the Maira-2 model via the Hugging Face Inference API.
|
| 26 |
+
"""
|
| 27 |
+
try:
|
| 28 |
+
encoded_image = encode_image(image)
|
| 29 |
+
client = InferenceClient() # No token needed inside the Space
|
| 30 |
+
result = client.question_answering(
|
| 31 |
+
question="Analyze this chest X-ray image and provide detailed findings. Include any abnormalities, their locations, and potential diagnoses. Be as specific as possible.",
|
| 32 |
+
image=encoded_image, # Pass the encoded image directly
|
| 33 |
+
model="microsoft/maira-2" # Specify the model
|
| 34 |
+
)
|
| 35 |
+
return result
|
| 36 |
+
|
| 37 |
+
except Exception as e:
|
| 38 |
+
st.error(f"An error occurred: {e}") # General exception handling is sufficient here
|
| 39 |
+
return None
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# --- Streamlit App ---
|
| 43 |
+
|
| 44 |
+
def main():
|
| 45 |
+
st.title("Chest X-ray Analysis with Maira-2 (Hugging Face Spaces)")
|
| 46 |
+
st.write(
|
| 47 |
+
"Upload a chest X-ray image. This app uses the Maira-2 model within this Hugging Face Space."
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
uploaded_file = st.file_uploader("Choose a chest X-ray image (JPG, PNG)", type=["jpg", "jpeg", "png"])
|
| 51 |
+
|
| 52 |
+
if uploaded_file is not None:
|
| 53 |
+
image = Image.open(uploaded_file)
|
| 54 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 55 |
+
|
| 56 |
+
with st.spinner("Analyzing image with Maira-2..."):
|
| 57 |
+
analysis_results = analyze_image_with_maira(image)
|
| 58 |
+
|
| 59 |
+
if analysis_results:
|
| 60 |
+
# --- Results Display (VQA format) ---
|
| 61 |
+
if isinstance(analysis_results, dict) and 'answer' in analysis_results:
|
| 62 |
+
st.subheader("Findings:")
|
| 63 |
+
st.write(analysis_results['answer'])
|
| 64 |
+
else:
|
| 65 |
+
st.warning("Unexpected API response format.")
|
| 66 |
+
st.write("Raw API response:", analysis_results)
|
| 67 |
+
else:
|
| 68 |
+
st.error("Failed to get analysis results.")
|
| 69 |
+
|
| 70 |
+
else:
|
| 71 |
+
st.write("Please upload an image.")
|
| 72 |
+
|
| 73 |
+
st.write("---")
|
| 74 |
+
st.write("Disclaimer: For informational purposes only. Not medical advice.")
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
main()
|