Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import torchvision.transforms as transforms
|
|
| 5 |
from torch.utils.data import Dataset, DataLoader
|
| 6 |
import gradio as gr
|
| 7 |
import sys
|
|
|
|
| 8 |
import tqdm
|
| 9 |
sys.path.append(os.path.abspath(os.path.join("", "..")))
|
| 10 |
import gc
|
|
@@ -31,162 +32,102 @@ from diffusers import (
|
|
| 31 |
from huggingface_hub import snapshot_download
|
| 32 |
import spaces
|
| 33 |
|
|
|
|
| 34 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
| 35 |
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
# Load scheduler, tokenizer and models.
|
| 45 |
-
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
| 46 |
torch_dtype=torch.float16,safety_checker = None,
|
| 47 |
requires_safety_checker = False).to(device)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
| 52 |
)
|
| 53 |
-
|
| 54 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
| 55 |
)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
| 59 |
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
-
return unet, vae, text_encoder, tokenizer, noise_scheduler
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
v = torch.load(f"{models_path}/files/V.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 80 |
-
proj = torch.load(f"{models_path}/files/proj_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 81 |
-
df = torch.load(f"{models_path}/files/identity_df.pt")
|
| 82 |
-
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
|
| 83 |
-
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 84 |
|
| 85 |
-
self.device = device
|
| 86 |
-
self.mean = mean
|
| 87 |
-
self.std = std
|
| 88 |
-
self.v = v
|
| 89 |
-
self.proj = proj
|
| 90 |
-
self.df = df
|
| 91 |
-
self.weight_dimensions = weight_dimensions
|
| 92 |
-
self.pinverse = pinverse
|
| 93 |
-
|
| 94 |
-
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
|
| 95 |
-
|
| 96 |
-
revision = None
|
| 97 |
-
rank = 1
|
| 98 |
-
weight_dtype = torch.bfloat16
|
| 99 |
-
|
| 100 |
-
# Load scheduler, tokenizer and models.
|
| 101 |
-
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
| 102 |
-
torch_dtype=torch.float16,safety_checker = None,
|
| 103 |
-
requires_safety_checker = False).to(device)
|
| 104 |
-
self.noise_scheduler = pipe.scheduler
|
| 105 |
-
del pipe
|
| 106 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 107 |
-
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
| 108 |
-
)
|
| 109 |
-
self.text_encoder = CLIPTextModel.from_pretrained(
|
| 110 |
-
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
| 111 |
-
)
|
| 112 |
-
self.vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
| 113 |
-
self.unet = UNet2DConditionModel.from_pretrained(
|
| 114 |
-
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
self.unet.requires_grad_(False)
|
| 118 |
-
self.unet.to(device, dtype=weight_dtype)
|
| 119 |
-
self.vae.requires_grad_(False)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
self.weights = None
|
| 129 |
-
|
| 130 |
-
young = get_direction(df, "Young", pinverse, 1000, device)
|
| 131 |
-
young = debias(young, "Male", df, pinverse, device)
|
| 132 |
-
young = debias(young, "Pointy_Nose", df, pinverse, device)
|
| 133 |
-
young = debias(young, "Wavy_Hair", df, pinverse, device)
|
| 134 |
-
young = debias(young, "Chubby", df, pinverse, device)
|
| 135 |
-
young = debias(young, "No_Beard", df, pinverse, device)
|
| 136 |
-
young = debias(young, "Mustache", df, pinverse, device)
|
| 137 |
-
self.young = young
|
| 138 |
-
|
| 139 |
-
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
|
| 140 |
-
pointy = debias(pointy, "Young", df, pinverse, device)
|
| 141 |
-
pointy = debias(pointy, "Male", df, pinverse, device)
|
| 142 |
-
pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
|
| 143 |
-
pointy = debias(pointy, "Chubby", df, pinverse, device)
|
| 144 |
-
pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
|
| 145 |
-
self.pointy = pointy
|
| 146 |
-
|
| 147 |
-
wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
|
| 148 |
-
wavy = debias(wavy, "Young", df, pinverse, device)
|
| 149 |
-
wavy = debias(wavy, "Male", df, pinverse, device)
|
| 150 |
-
wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
|
| 151 |
-
wavy = debias(wavy, "Chubby", df, pinverse, device)
|
| 152 |
-
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
|
| 153 |
-
self.wavy = wavy
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
thick = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
|
| 157 |
-
thick = debias(thick, "Male", df, pinverse, device)
|
| 158 |
-
thick = debias(thick, "Young", df, pinverse, device)
|
| 159 |
-
thick = debias(thick, "Pointy_Nose", df, pinverse, device)
|
| 160 |
-
thick = debias(thick, "Wavy_Hair", df, pinverse, device)
|
| 161 |
-
thick = debias(thick, "Mustache", df, pinverse, device)
|
| 162 |
-
thick = debias(thick, "No_Beard", df, pinverse, device)
|
| 163 |
-
thick = debias(thick, "Sideburns", df, pinverse, device)
|
| 164 |
-
thick = debias(thick, "Big_Nose", df, pinverse, device)
|
| 165 |
-
thick = debias(thick, "Big_Lips", df, pinverse, device)
|
| 166 |
-
thick = debias(thick, "Black_Hair", df, pinverse, device)
|
| 167 |
-
thick = debias(thick, "Brown_Hair", df, pinverse, device)
|
| 168 |
-
thick = debias(thick, "Pale_Skin", df, pinverse, device)
|
| 169 |
-
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
|
| 170 |
-
self.thick = thick
|
| 171 |
-
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
self.v.to(device)
|
| 186 |
-
self.proj.to(device)
|
| 187 |
-
self.weights.to(device)
|
| 188 |
|
| 189 |
-
|
| 190 |
self.unet,
|
| 191 |
rank=1,
|
| 192 |
multiplier=1.0,
|
|
@@ -196,68 +137,67 @@ class main():
|
|
| 196 |
|
| 197 |
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
| 202 |
generator = generator,
|
| 203 |
device = self.device
|
| 204 |
).bfloat16()
|
| 205 |
|
| 206 |
|
| 207 |
-
|
| 208 |
|
| 209 |
-
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 214 |
)
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
|
| 237 |
-
|
| 238 |
|
| 239 |
-
|
| 240 |
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
self.thick.to(device)
|
| 259 |
|
| 260 |
-
|
| 261 |
self.unet,
|
| 262 |
rank=1,
|
| 263 |
multiplier=1.0,
|
|
@@ -266,90 +206,87 @@ class main():
|
|
| 266 |
).to(device, torch.bfloat16)
|
| 267 |
|
| 268 |
|
| 269 |
-
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
|
| 280 |
|
| 281 |
-
|
| 282 |
|
| 283 |
-
|
| 284 |
-
|
| 285 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
| 286 |
generator = generator,
|
| 287 |
device = self.device
|
| 288 |
).bfloat16()
|
| 289 |
|
| 290 |
|
| 291 |
-
|
| 292 |
|
| 293 |
-
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 298 |
)
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
|
| 304 |
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
image = Image.fromarray((image * 255).round().astype("uint8"))
|
| 332 |
|
| 333 |
-
|
| 334 |
-
return image
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
"stablediffusionapi/realistic-vision-v51" , subfolder="unet", revision=None
|
| 341 |
)
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
|
| 354 |
|
| 355 |
|
|
|
|
| 5 |
from torch.utils.data import Dataset, DataLoader
|
| 6 |
import gradio as gr
|
| 7 |
import sys
|
| 8 |
+
import uuid
|
| 9 |
import tqdm
|
| 10 |
sys.path.append(os.path.abspath(os.path.join("", "..")))
|
| 11 |
import gc
|
|
|
|
| 32 |
from huggingface_hub import snapshot_download
|
| 33 |
import spaces
|
| 34 |
|
| 35 |
+
|
| 36 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
| 37 |
|
| 38 |
|
| 39 |
+
device = "cuda"
|
| 40 |
+
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
|
| 41 |
+
revision = None
|
| 42 |
+
weight_dtype = torch.bfloat16
|
| 43 |
+
# Load scheduler, tokenizer and models.
|
| 44 |
+
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
|
|
|
|
|
|
|
|
|
| 45 |
torch_dtype=torch.float16,safety_checker = None,
|
| 46 |
requires_safety_checker = False).to(device)
|
| 47 |
+
noise_scheduler = pipe.scheduler
|
| 48 |
+
del pipe
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 50 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
| 51 |
)
|
| 52 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 53 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
| 54 |
)
|
| 55 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
| 56 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 57 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
| 58 |
)
|
| 59 |
+
unet.requires_grad_(False)
|
| 60 |
+
unet.to(device, dtype=weight_dtype)
|
| 61 |
+
vae.requires_grad_(False)
|
| 62 |
+
|
| 63 |
+
text_encoder.requires_grad_(False)
|
| 64 |
+
vae.requires_grad_(False)
|
| 65 |
+
vae.to(device, dtype=weight_dtype)
|
| 66 |
+
text_encoder.to(device, dtype=weight_dtype)
|
| 67 |
+
print("")
|
| 68 |
|
|
|
|
| 69 |
|
| 70 |
+
mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 71 |
+
std = torch.load(f"{models_path}/files/std.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 72 |
+
v = torch.load(f"{models_path}/files/V.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 73 |
+
proj = torch.load(f"{models_path}/files/proj_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 74 |
+
df = torch.load(f"{models_path}/files/identity_df.pt")
|
| 75 |
+
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
|
| 76 |
+
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
young = get_direction(df, "Young", pinverse, 1000, device)
|
| 80 |
+
young = debias(young, "Male", df, pinverse, device)
|
| 81 |
+
young = debias(young, "Pointy_Nose", df, pinverse, device)
|
| 82 |
+
young = debias(young, "Wavy_Hair", df, pinverse, device)
|
| 83 |
+
young = debias(young, "Chubby", df, pinverse, device)
|
| 84 |
+
young = debias(young, "No_Beard", df, pinverse, device)
|
| 85 |
+
young = debias(young, "Mustache", df, pinverse, device)
|
| 86 |
+
|
| 87 |
+
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
|
| 88 |
+
pointy = debias(pointy, "Young", df, pinverse, device)
|
| 89 |
+
pointy = debias(pointy, "Male", df, pinverse, device)
|
| 90 |
+
pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
|
| 91 |
+
pointy = debias(pointy, "Chubby", df, pinverse, device)
|
| 92 |
+
pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
|
| 93 |
+
|
| 94 |
+
wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
|
| 95 |
+
wavy = debias(wavy, "Young", df, pinverse, device)
|
| 96 |
+
wavy = debias(wavy, "Male", df, pinverse, device)
|
| 97 |
+
wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
|
| 98 |
+
wavy = debias(wavy, "Chubby", df, pinverse, device)
|
| 99 |
+
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
|
| 100 |
+
|
| 101 |
+
thick = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
|
| 102 |
+
thick = debias(thick, "Male", df, pinverse, device)
|
| 103 |
+
thick = debias(thick, "Young", df, pinverse, device)
|
| 104 |
+
thick = debias(thick, "Pointy_Nose", df, pinverse, device)
|
| 105 |
+
thick = debias(thick, "Wavy_Hair", df, pinverse, device)
|
| 106 |
+
thick = debias(thick, "Mustache", df, pinverse, device)
|
| 107 |
+
thick = debias(thick, "No_Beard", df, pinverse, device)
|
| 108 |
+
thick = debias(thick, "Sideburns", df, pinverse, device)
|
| 109 |
+
thick = debias(thick, "Big_Nose", df, pinverse, device)
|
| 110 |
+
thick = debias(thick, "Big_Lips", df, pinverse, device)
|
| 111 |
+
thick = debias(thick, "Black_Hair", df, pinverse, device)
|
| 112 |
+
thick = debias(thick, "Brown_Hair", df, pinverse, device)
|
| 113 |
+
thick = debias(thick, "Pale_Skin", df, pinverse, device)
|
| 114 |
+
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
@torch.no_grad()
|
| 118 |
+
@spaces.GPU(duration=120)
|
| 119 |
+
def inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
| 120 |
+
device = self.device
|
| 121 |
+
self.unet.to(device)
|
| 122 |
+
self.text_encoder.to(device)
|
| 123 |
+
self.vae.to(device)
|
| 124 |
+
self.mean.to(device)
|
| 125 |
+
self.std.to(device)
|
| 126 |
+
self.v.to(device)
|
| 127 |
+
self.proj.to(device)
|
| 128 |
+
self.weights.to(device)
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
network = LoRAw2w( self.weights.bfloat16(), self.mean.bfloat16(), self.std.bfloat16(), self.v[:, :1000].bfloat16(),
|
| 131 |
self.unet,
|
| 132 |
rank=1,
|
| 133 |
multiplier=1.0,
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
|
| 140 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 141 |
+
latents = torch.randn(
|
| 142 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
| 143 |
generator = generator,
|
| 144 |
device = self.device
|
| 145 |
).bfloat16()
|
| 146 |
|
| 147 |
|
| 148 |
+
text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 149 |
|
| 150 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
|
| 151 |
|
| 152 |
+
max_length = text_input.input_ids.shape[-1]
|
| 153 |
+
uncond_input = self.tokenizer(
|
| 154 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 155 |
)
|
| 156 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
| 157 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).bfloat16()
|
| 158 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
| 159 |
+
latents = latents * self.noise_scheduler.init_noise_sigma
|
| 160 |
|
| 161 |
+
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
|
| 162 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 163 |
+
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
| 164 |
|
| 165 |
+
with network:
|
| 166 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
| 167 |
|
| 168 |
+
#guidance
|
| 169 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 170 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 171 |
+
latents = self.noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 172 |
|
| 173 |
+
latents = 1 / 0.18215 * latents
|
| 174 |
+
image = self.vae.decode(latents.float()).sample
|
| 175 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 176 |
+
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
| 177 |
|
| 178 |
+
image = Image.fromarray((image * 255).round().astype("uint8"))
|
| 179 |
|
| 180 |
+
return image
|
| 181 |
|
| 182 |
|
| 183 |
+
@torch.no_grad()
|
| 184 |
+
@spaces.GPU(duration=120)
|
| 185 |
+
def edit_inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
|
| 186 |
+
device = self.device
|
| 187 |
+
self.unet.to(device)
|
| 188 |
+
self.text_encoder.to(device)
|
| 189 |
+
self.vae.to(device)
|
| 190 |
+
self.mean.to(device)
|
| 191 |
+
self.std.to(device)
|
| 192 |
+
self.v.to(device)
|
| 193 |
+
self.proj.to(device)
|
| 194 |
+
self.weights = torch.load("model.pt").to(device)
|
| 195 |
+
self.young.to(device)
|
| 196 |
+
self.pointy.to(device)
|
| 197 |
+
self.wavy.to(device)
|
| 198 |
+
self.thick.to(device)
|
|
|
|
| 199 |
|
| 200 |
+
network = LoRAw2w( self.weights.bfloat16(), self.mean.bfloat16(), self.std.bfloat16(), self.v[:, :1000].bfloat16(),
|
| 201 |
self.unet,
|
| 202 |
rank=1,
|
| 203 |
multiplier=1.0,
|
|
|
|
| 206 |
).to(device, torch.bfloat16)
|
| 207 |
|
| 208 |
|
| 209 |
+
original_weights = self.weights.clone()
|
| 210 |
|
| 211 |
+
#pad to same number of PCs
|
| 212 |
+
pcs_original = original_weights.shape[1]
|
| 213 |
+
pcs_edits = self.young.shape[1]
|
| 214 |
+
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
|
| 215 |
+
young_pad = torch.cat((self.young, padding), 1)
|
| 216 |
+
pointy_pad = torch.cat((self.pointy, padding), 1)
|
| 217 |
+
wavy_pad = torch.cat((self.wavy, padding), 1)
|
| 218 |
+
thick_pad = torch.cat((self.thick, padding), 1)
|
| 219 |
|
| 220 |
|
| 221 |
+
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
|
| 222 |
|
| 223 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 224 |
+
latents = torch.randn(
|
| 225 |
(1, self.unet.in_channels, 512 // 8, 512 // 8),
|
| 226 |
generator = generator,
|
| 227 |
device = self.device
|
| 228 |
).bfloat16()
|
| 229 |
|
| 230 |
|
| 231 |
+
text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 232 |
|
| 233 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
|
| 234 |
|
| 235 |
+
max_length = text_input.input_ids.shape[-1]
|
| 236 |
+
uncond_input = self.tokenizer(
|
| 237 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 238 |
)
|
| 239 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
| 240 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).bfloat16()
|
| 241 |
+
self.noise_scheduler.set_timesteps(ddim_steps)
|
| 242 |
+
latents = latents * self.noise_scheduler.init_noise_sigma
|
| 243 |
|
| 244 |
|
| 245 |
|
| 246 |
+
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
|
| 247 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 248 |
+
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
| 249 |
|
| 250 |
+
if t>start_noise:
|
| 251 |
+
pass
|
| 252 |
+
elif t<=start_noise:
|
| 253 |
+
network.proj = torch.nn.Parameter(edited_weights)
|
| 254 |
+
network.reset()
|
| 255 |
|
| 256 |
+
with network:
|
| 257 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
| 258 |
|
| 259 |
|
| 260 |
+
#guidance
|
| 261 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 262 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 263 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 264 |
|
| 265 |
+
latents = 1 / 0.18215 * latents
|
| 266 |
+
image = self.vae.decode(latents.float()).sample
|
| 267 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 268 |
+
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
| 269 |
+
image = Image.fromarray((image * 255).round().astype("uint8"))
|
|
|
|
|
|
|
| 270 |
|
| 271 |
+
return image
|
|
|
|
| 272 |
|
| 273 |
+
@torch.no_grad()
|
| 274 |
+
@spaces.GPU(duration=120)
|
| 275 |
+
def sample_then_run(self):
|
| 276 |
+
self.unet = UNet2DConditionModel.from_pretrained(
|
| 277 |
"stablediffusionapi/realistic-vision-v51" , subfolder="unet", revision=None
|
| 278 |
)
|
| 279 |
+
self.unet.to(self.device, dtype=torch.bfloat16)
|
| 280 |
+
self.weights = sample_weights(self.unet, self.proj, self.mean, self.std, self.v[:, :1000], self.device, factor = 1.00)
|
| 281 |
+
|
| 282 |
+
prompt = "sks person"
|
| 283 |
+
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
|
| 284 |
+
seed = 5
|
| 285 |
+
cfg = 3.0
|
| 286 |
+
steps = 25
|
| 287 |
+
image = self.inference(prompt, negative_prompt, cfg, steps, seed)
|
| 288 |
+
torch.save(self.weights.cpu().detach(), "model.pt" )
|
| 289 |
+
return image, "model.pt"
|
| 290 |
|
| 291 |
|
| 292 |
|