Update app.py
Browse files
app.py
CHANGED
|
@@ -6,210 +6,97 @@ from torch.utils.data import Dataset, DataLoader
|
|
| 6 |
import gradio as gr
|
| 7 |
import sys
|
| 8 |
import tqdm
|
| 9 |
-
import uuid
|
| 10 |
sys.path.append(os.path.abspath(os.path.join("", "..")))
|
| 11 |
import gc
|
| 12 |
import warnings
|
| 13 |
warnings.filterwarnings("ignore")
|
| 14 |
from PIL import Image
|
| 15 |
import numpy as np
|
|
|
|
| 16 |
from editing import get_direction, debias
|
|
|
|
| 17 |
from lora_w2w import LoRAw2w
|
| 18 |
from huggingface_hub import snapshot_download
|
| 19 |
import spaces
|
| 20 |
-
|
| 21 |
-
from lora_w2w import LoRAw2w
|
| 22 |
-
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler
|
| 23 |
-
from transformers import AutoTokenizer, PretrainedConfig
|
| 24 |
-
import warnings
|
| 25 |
-
warnings.filterwarnings("ignore")
|
| 26 |
-
from diffusers import (
|
| 27 |
-
AutoencoderKL,
|
| 28 |
-
DDPMScheduler,
|
| 29 |
-
DiffusionPipeline,
|
| 30 |
-
DPMSolverMultistepScheduler,
|
| 31 |
-
UNet2DConditionModel,
|
| 32 |
-
PNDMScheduler,
|
| 33 |
-
StableDiffusionPipeline
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
device = gr.State("cuda")
|
| 38 |
-
unet = gr.State()
|
| 39 |
-
vae = gr.State()
|
| 40 |
-
text_encoder = gr.State()
|
| 41 |
-
tokenizer = gr.State()
|
| 42 |
-
noise_scheduler = gr.State()
|
| 43 |
-
network = gr.State()
|
| 44 |
-
|
| 45 |
-
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
|
| 46 |
-
revision = None
|
| 47 |
-
rank = 1
|
| 48 |
-
weight_dtype = torch.bfloat16
|
| 49 |
-
# Load scheduler, tokenizer and models.
|
| 50 |
-
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
| 51 |
-
torch_dtype=torch.float16,safety_checker = None,
|
| 52 |
-
requires_safety_checker = False).to(device.value)
|
| 53 |
-
noise_scheduler.value = pipe.scheduler
|
| 54 |
-
del pipe
|
| 55 |
-
tokenizer.value = AutoTokenizer.from_pretrained(
|
| 56 |
-
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
| 57 |
-
)
|
| 58 |
-
text_encoder.value = CLIPTextModel.from_pretrained(
|
| 59 |
-
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
| 60 |
-
)
|
| 61 |
-
vae.value = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
| 62 |
-
unet.value = UNet2DConditionModel.from_pretrained(
|
| 63 |
-
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
unet.value.requires_grad_(False)
|
| 67 |
-
unet.value.to(device.value, dtype=weight_dtype)
|
| 68 |
-
vae.value.requires_grad_(False)
|
| 69 |
-
|
| 70 |
-
text_encoder.value.requires_grad_(False)
|
| 71 |
-
vae.value.requires_grad_(False)
|
| 72 |
-
vae.value.to(device.value, dtype=weight_dtype)
|
| 73 |
-
text_encoder.value.to(device.value, dtype=weight_dtype)
|
| 74 |
-
print("")
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
| 86 |
|
| 87 |
-
mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device
|
| 88 |
-
std = torch.load(f"{models_path}/files/std.pt", map_location=torch.device('cpu')).bfloat16().to(device
|
| 89 |
-
v = torch.load(f"{models_path}/files/V.pt", map_location=torch.device('cpu')).bfloat16().to(device
|
| 90 |
-
proj = torch.load(f"{models_path}/files/proj_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device
|
| 91 |
df = torch.load(f"{models_path}/files/identity_df.pt")
|
| 92 |
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
|
| 93 |
-
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
young = gr.State()
|
| 97 |
-
young.value = get_direction(df, "Young", pinverse, 1000, device.value)
|
| 98 |
-
young.value = debias(young.value, "Male", df, pinverse, device.value)
|
| 99 |
-
young.value = debias(young.value, "Pointy_Nose", df, pinverse, device.value)
|
| 100 |
-
young.value = debias(young.value, "Wavy_Hair", df, pinverse, device.value)
|
| 101 |
-
young.value = debias(young.value, "Chubby", df, pinverse, device.value)
|
| 102 |
-
young.value = debias(young.value, "No_Beard", df, pinverse, device.value)
|
| 103 |
-
young.value = debias(young.value, "Mustache", df, pinverse, device.value)
|
| 104 |
-
|
| 105 |
-
pointy = gr.State()
|
| 106 |
-
pointy.value = get_direction(df, "Pointy_Nose", pinverse, 1000, device.value)
|
| 107 |
-
pointy.value = debias(pointy.value, "Young", df, pinverse, device.value)
|
| 108 |
-
pointy.value = debias(pointy.value, "Male", df, pinverse, device.value)
|
| 109 |
-
pointy.value = debias(pointy.value, "Wavy_Hair", df, pinverse, device.value)
|
| 110 |
-
pointy.value = debias(pointy.value, "Chubby", df, pinverse, device.value)
|
| 111 |
-
pointy.value = debias(pointy.value, "Heavy_Makeup", df, pinverse, device.value)
|
| 112 |
-
|
| 113 |
-
wavy = gr.State()
|
| 114 |
-
wavy.value = get_direction(df, "Wavy_Hair", pinverse, 1000, device.value)
|
| 115 |
-
wavy.value = debias(wavy.value, "Young", df, pinverse, device.value)
|
| 116 |
-
wavy.value = debias(wavy.value, "Male", df, pinverse, device.value)
|
| 117 |
-
wavy.value = debias(wavy.value, "Pointy_Nose", df, pinverse, device.value)
|
| 118 |
-
wavy.value = debias(wavy.value, "Chubby", df, pinverse, device.value)
|
| 119 |
-
wavy.value = debias(wavy.value, "Heavy_Makeup", df, pinverse, device.value)
|
| 120 |
-
|
| 121 |
-
thick = gr.State()
|
| 122 |
-
thick.value = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device.value)
|
| 123 |
-
thick.value = debias(thick.value, "Male", df, pinverse, device.value)
|
| 124 |
-
thick.value = debias(thick.value, "Young", df, pinverse, device.value)
|
| 125 |
-
thick.value = debias(thick.value, "Pointy_Nose", df, pinverse, device.value)
|
| 126 |
-
thick.value = debias(thick.value, "Wavy_Hair", df, pinverse, device.value)
|
| 127 |
-
thick.value = debias(thick.value, "Mustache", df, pinverse, device.value)
|
| 128 |
-
thick.value = debias(thick.value, "No_Beard", df, pinverse, device.value)
|
| 129 |
-
thick.value = debias(thick.value, "Sideburns", df, pinverse, device.value)
|
| 130 |
-
thick.value = debias(thick.value, "Big_Nose", df, pinverse, device.value)
|
| 131 |
-
thick.value = debias(thick.value, "Big_Lips", df, pinverse, device.value)
|
| 132 |
-
thick.value = debias(thick.value, "Black_Hair", df, pinverse, device.value)
|
| 133 |
-
thick.value = debias(thick.value, "Brown_Hair", df, pinverse, device.value)
|
| 134 |
-
thick.value = debias(thick.value, "Pale_Skin", df, pinverse, device.value)
|
| 135 |
-
thick.value = debias(thick.value, "Heavy_Makeup", df, pinverse, device.value)
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
@torch.no_grad()
|
| 143 |
-
@spaces.GPU
|
| 144 |
-
def sample_weights(unet, proj, mean, std, v, device, factor = 1.0):
|
| 145 |
-
# get mean and standard deviation for each principal component
|
| 146 |
-
m = torch.mean(proj, 0)
|
| 147 |
-
standev = torch.std(proj, 0)
|
| 148 |
-
del proj
|
| 149 |
-
torch.cuda.empty_cache()
|
| 150 |
-
# sample
|
| 151 |
-
sample = torch.zeros([1, 1000]).to(device)
|
| 152 |
-
for i in range(1000):
|
| 153 |
-
sample[0, i] = torch.normal(m[i], factor*standev[i], (1,1))
|
| 154 |
-
|
| 155 |
-
# load weights into network
|
| 156 |
-
net = LoRAw2w( sample, mean, std, v,
|
| 157 |
-
unet,
|
| 158 |
-
rank=1,
|
| 159 |
-
multiplier=1.0,
|
| 160 |
-
alpha=27.0,
|
| 161 |
-
train_method="xattn-strict"
|
| 162 |
-
).to(device, torch.bfloat16)
|
| 163 |
-
|
| 164 |
-
return net
|
| 165 |
-
|
| 166 |
-
@torch.no_grad()
|
| 167 |
-
@spaces.GPU
|
| 168 |
def sample_model():
|
| 169 |
-
unet
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
@torch.no_grad()
|
| 177 |
@spaces.GPU
|
| 178 |
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
| 179 |
-
|
| 180 |
-
generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
latents = torch.randn(
|
| 182 |
-
(1, unet.
|
| 183 |
generator = generator,
|
| 184 |
-
device = device
|
| 185 |
).bfloat16()
|
| 186 |
|
| 187 |
|
| 188 |
-
text_input = tokenizer
|
| 189 |
|
| 190 |
-
text_embeddings = text_encoder
|
| 191 |
|
| 192 |
max_length = text_input.input_ids.shape[-1]
|
| 193 |
-
uncond_input = tokenizer
|
| 194 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 195 |
)
|
| 196 |
-
uncond_embeddings = text_encoder
|
| 197 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 198 |
-
noise_scheduler.
|
| 199 |
-
latents = latents * noise_scheduler.
|
| 200 |
|
| 201 |
-
for i,t in enumerate(tqdm.tqdm(noise_scheduler.
|
| 202 |
latent_model_input = torch.cat([latents] * 2)
|
| 203 |
-
latent_model_input = noise_scheduler.
|
| 204 |
-
with network
|
| 205 |
-
noise_pred = unet
|
| 206 |
#guidance
|
| 207 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 208 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 209 |
-
latents = noise_scheduler.
|
| 210 |
|
| 211 |
latents = 1 / 0.18215 * latents
|
| 212 |
-
image = vae.
|
| 213 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 214 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
| 215 |
|
|
@@ -221,67 +108,78 @@ def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
|
| 221 |
@torch.no_grad()
|
| 222 |
@spaces.GPU
|
| 223 |
def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
|
| 226 |
-
original_weights = network.value.proj.clone()
|
| 227 |
|
| 228 |
#pad to same number of PCs
|
| 229 |
pcs_original = original_weights.shape[1]
|
| 230 |
-
pcs_edits = young.
|
| 231 |
-
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device
|
| 232 |
-
young_pad = torch.cat((young
|
| 233 |
-
pointy_pad = torch.cat((pointy
|
| 234 |
-
wavy_pad = torch.cat((wavy
|
| 235 |
-
thick_pad = torch.cat((thick
|
| 236 |
|
| 237 |
|
| 238 |
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
|
| 239 |
|
| 240 |
-
generator = torch.Generator(device=device
|
| 241 |
latents = torch.randn(
|
| 242 |
-
(1, unet.
|
| 243 |
generator = generator,
|
| 244 |
-
device = device
|
| 245 |
).bfloat16()
|
| 246 |
|
| 247 |
|
| 248 |
-
text_input = tokenizer
|
| 249 |
|
| 250 |
-
text_embeddings = text_encoder
|
| 251 |
|
| 252 |
max_length = text_input.input_ids.shape[-1]
|
| 253 |
-
uncond_input = tokenizer
|
| 254 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 255 |
)
|
| 256 |
-
uncond_embeddings = text_encoder
|
| 257 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 258 |
-
noise_scheduler.
|
| 259 |
-
latents = latents * noise_scheduler.
|
| 260 |
|
| 261 |
|
| 262 |
|
| 263 |
-
for i,t in enumerate(tqdm.tqdm(noise_scheduler.
|
| 264 |
latent_model_input = torch.cat([latents] * 2)
|
| 265 |
-
latent_model_input = noise_scheduler.
|
| 266 |
|
| 267 |
if t>start_noise:
|
| 268 |
pass
|
| 269 |
elif t<=start_noise:
|
| 270 |
-
network.
|
| 271 |
-
network.
|
| 272 |
|
| 273 |
|
| 274 |
with network:
|
| 275 |
-
noise_pred = unet
|
| 276 |
|
| 277 |
|
| 278 |
#guidance
|
| 279 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 280 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 281 |
-
latents = noise_scheduler.
|
| 282 |
|
| 283 |
latents = 1 / 0.18215 * latents
|
| 284 |
-
image = vae.
|
| 285 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 286 |
|
| 287 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
|
@@ -289,12 +187,11 @@ def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, st
|
|
| 289 |
image = Image.fromarray((image * 255).round().astype("uint8"))
|
| 290 |
|
| 291 |
#reset weights back to original
|
| 292 |
-
network.
|
| 293 |
-
network.
|
| 294 |
|
| 295 |
return image
|
| 296 |
-
|
| 297 |
-
@torch.no_grad()
|
| 298 |
@spaces.GPU
|
| 299 |
def sample_then_run():
|
| 300 |
sample_model()
|
|
@@ -304,12 +201,52 @@ def sample_then_run():
|
|
| 304 |
cfg = 3.0
|
| 305 |
steps = 25
|
| 306 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 307 |
-
torch.save(network.
|
| 308 |
-
|
| 309 |
-
network.value.proj.detach().cpu()
|
| 310 |
-
|
| 311 |
-
return image, "model.pt", network.value #net #, network.value.cpu()
|
| 312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
class CustomImageDataset(Dataset):
|
| 315 |
def __init__(self, images, transform=None):
|
|
@@ -542,7 +479,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 542 |
outputs = [input_image, file_output])
|
| 543 |
|
| 544 |
|
| 545 |
-
sample.click(fn=sample_then_run, outputs=[input_image, file_output
|
| 546 |
|
| 547 |
submit.click(
|
| 548 |
fn=edit_inference, inputs=[prompt, negative_prompt, cfg, steps, seed, injection_step, a1, a2, a3, a4], outputs=[gallery]
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import sys
|
| 8 |
import tqdm
|
|
|
|
| 9 |
sys.path.append(os.path.abspath(os.path.join("", "..")))
|
| 10 |
import gc
|
| 11 |
import warnings
|
| 12 |
warnings.filterwarnings("ignore")
|
| 13 |
from PIL import Image
|
| 14 |
import numpy as np
|
| 15 |
+
from utils import load_models
|
| 16 |
from editing import get_direction, debias
|
| 17 |
+
from sampling import sample_weights
|
| 18 |
from lora_w2w import LoRAw2w
|
| 19 |
from huggingface_hub import snapshot_download
|
| 20 |
import spaces
|
| 21 |
+
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
global device
|
| 24 |
+
global generator
|
| 25 |
+
global unet
|
| 26 |
+
global vae
|
| 27 |
+
global text_encoder
|
| 28 |
+
global tokenizer
|
| 29 |
+
global noise_scheduler
|
| 30 |
+
global network
|
| 31 |
+
device = "cuda"
|
| 32 |
+
#generator = torch.Generator(device=device)
|
| 33 |
|
| 34 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
| 35 |
|
| 36 |
+
mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 37 |
+
std = torch.load(f"{models_path}/files/std.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 38 |
+
v = torch.load(f"{models_path}/files/V.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 39 |
+
proj = torch.load(f"{models_path}/files/proj_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
| 40 |
df = torch.load(f"{models_path}/files/identity_df.pt")
|
| 41 |
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
|
| 42 |
+
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device)
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def sample_model():
|
| 47 |
+
global unet
|
| 48 |
+
del unet
|
| 49 |
+
global network
|
| 50 |
+
mean.to(device)
|
| 51 |
+
std.to(device)
|
| 52 |
+
v.to(device)
|
| 53 |
+
proj.to(device)
|
| 54 |
+
unet, _, _, _, _ = load_models(device)
|
| 55 |
+
network = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00)
|
| 56 |
|
| 57 |
@torch.no_grad()
|
| 58 |
@spaces.GPU
|
| 59 |
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
| 60 |
+
global device
|
| 61 |
+
#global generator
|
| 62 |
+
global unet
|
| 63 |
+
global vae
|
| 64 |
+
global text_encoder
|
| 65 |
+
global tokenizer
|
| 66 |
+
global noise_scheduler
|
| 67 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 68 |
latents = torch.randn(
|
| 69 |
+
(1, unet.in_channels, 512 // 8, 512 // 8),
|
| 70 |
generator = generator,
|
| 71 |
+
device = device
|
| 72 |
).bfloat16()
|
| 73 |
|
| 74 |
|
| 75 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 76 |
|
| 77 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
| 78 |
|
| 79 |
max_length = text_input.input_ids.shape[-1]
|
| 80 |
+
uncond_input = tokenizer(
|
| 81 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 82 |
)
|
| 83 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
| 84 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 85 |
+
noise_scheduler.set_timesteps(ddim_steps)
|
| 86 |
+
latents = latents * noise_scheduler.init_noise_sigma
|
| 87 |
|
| 88 |
+
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
| 89 |
latent_model_input = torch.cat([latents] * 2)
|
| 90 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
| 91 |
+
with network:
|
| 92 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
| 93 |
#guidance
|
| 94 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 95 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 96 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 97 |
|
| 98 |
latents = 1 / 0.18215 * latents
|
| 99 |
+
image = vae.decode(latents).sample
|
| 100 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 101 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
| 102 |
|
|
|
|
| 108 |
@torch.no_grad()
|
| 109 |
@spaces.GPU
|
| 110 |
def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
|
| 111 |
+
start_items()
|
| 112 |
+
global device
|
| 113 |
+
#global generator
|
| 114 |
+
global unet
|
| 115 |
+
global vae
|
| 116 |
+
global text_encoder
|
| 117 |
+
global tokenizer
|
| 118 |
+
global noise_scheduler
|
| 119 |
+
global young
|
| 120 |
+
global pointy
|
| 121 |
+
global wavy
|
| 122 |
+
global thick
|
| 123 |
|
| 124 |
+
original_weights = network.proj.clone()
|
|
|
|
| 125 |
|
| 126 |
#pad to same number of PCs
|
| 127 |
pcs_original = original_weights.shape[1]
|
| 128 |
+
pcs_edits = young.shape[1]
|
| 129 |
+
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
|
| 130 |
+
young_pad = torch.cat((young, padding), 1)
|
| 131 |
+
pointy_pad = torch.cat((pointy, padding), 1)
|
| 132 |
+
wavy_pad = torch.cat((wavy, padding), 1)
|
| 133 |
+
thick_pad = torch.cat((thick, padding), 1)
|
| 134 |
|
| 135 |
|
| 136 |
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
|
| 137 |
|
| 138 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 139 |
latents = torch.randn(
|
| 140 |
+
(1, unet.in_channels, 512 // 8, 512 // 8),
|
| 141 |
generator = generator,
|
| 142 |
+
device = device
|
| 143 |
).bfloat16()
|
| 144 |
|
| 145 |
|
| 146 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 147 |
|
| 148 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
| 149 |
|
| 150 |
max_length = text_input.input_ids.shape[-1]
|
| 151 |
+
uncond_input = tokenizer(
|
| 152 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 153 |
)
|
| 154 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
| 155 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 156 |
+
noise_scheduler.set_timesteps(ddim_steps)
|
| 157 |
+
latents = latents * noise_scheduler.init_noise_sigma
|
| 158 |
|
| 159 |
|
| 160 |
|
| 161 |
+
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
| 162 |
latent_model_input = torch.cat([latents] * 2)
|
| 163 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
| 164 |
|
| 165 |
if t>start_noise:
|
| 166 |
pass
|
| 167 |
elif t<=start_noise:
|
| 168 |
+
network.proj = torch.nn.Parameter(edited_weights)
|
| 169 |
+
network.reset()
|
| 170 |
|
| 171 |
|
| 172 |
with network:
|
| 173 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
| 174 |
|
| 175 |
|
| 176 |
#guidance
|
| 177 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 178 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 179 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 180 |
|
| 181 |
latents = 1 / 0.18215 * latents
|
| 182 |
+
image = vae.decode(latents).sample
|
| 183 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 184 |
|
| 185 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
|
|
|
| 187 |
image = Image.fromarray((image * 255).round().astype("uint8"))
|
| 188 |
|
| 189 |
#reset weights back to original
|
| 190 |
+
network.proj = torch.nn.Parameter(original_weights)
|
| 191 |
+
network.reset()
|
| 192 |
|
| 193 |
return image
|
| 194 |
+
|
|
|
|
| 195 |
@spaces.GPU
|
| 196 |
def sample_then_run():
|
| 197 |
sample_model()
|
|
|
|
| 201 |
cfg = 3.0
|
| 202 |
steps = 25
|
| 203 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 204 |
+
torch.save(network.proj, "model.pt" )
|
| 205 |
+
return image, "model.pt"
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
+
#@spaces.GPU
|
| 208 |
+
def start_items():
|
| 209 |
+
print("Starting items")
|
| 210 |
+
global young
|
| 211 |
+
global pointy
|
| 212 |
+
global wavy
|
| 213 |
+
global thick
|
| 214 |
+
young = get_direction(df, "Young", pinverse, 1000, device)
|
| 215 |
+
young = debias(young, "Male", df, pinverse, device)
|
| 216 |
+
young = debias(young, "Pointy_Nose", df, pinverse, device)
|
| 217 |
+
young = debias(young, "Wavy_Hair", df, pinverse, device)
|
| 218 |
+
young = debias(young, "Chubby", df, pinverse, device)
|
| 219 |
+
young = debias(young, "No_Beard", df, pinverse, device)
|
| 220 |
+
young = debias(young, "Mustache", df, pinverse, device)
|
| 221 |
+
|
| 222 |
+
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
|
| 223 |
+
pointy = debias(pointy, "Young", df, pinverse, device)
|
| 224 |
+
pointy = debias(pointy, "Male", df, pinverse, device)
|
| 225 |
+
pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
|
| 226 |
+
pointy = debias(pointy, "Chubby", df, pinverse, device)
|
| 227 |
+
pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
|
| 228 |
+
|
| 229 |
+
wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
|
| 230 |
+
wavy = debias(wavy, "Young", df, pinverse, device)
|
| 231 |
+
wavy = debias(wavy, "Male", df, pinverse, device)
|
| 232 |
+
wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
|
| 233 |
+
wavy = debias(wavy, "Chubby", df, pinverse, device)
|
| 234 |
+
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
|
| 235 |
+
|
| 236 |
+
thick = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
|
| 237 |
+
thick = debias(thick, "Male", df, pinverse, device)
|
| 238 |
+
thick = debias(thick, "Young", df, pinverse, device)
|
| 239 |
+
thick = debias(thick, "Pointy_Nose", df, pinverse, device)
|
| 240 |
+
thick = debias(thick, "Wavy_Hair", df, pinverse, device)
|
| 241 |
+
thick = debias(thick, "Mustache", df, pinverse, device)
|
| 242 |
+
thick = debias(thick, "No_Beard", df, pinverse, device)
|
| 243 |
+
thick = debias(thick, "Sideburns", df, pinverse, device)
|
| 244 |
+
thick = debias(thick, "Big_Nose", df, pinverse, device)
|
| 245 |
+
thick = debias(thick, "Big_Lips", df, pinverse, device)
|
| 246 |
+
thick = debias(thick, "Black_Hair", df, pinverse, device)
|
| 247 |
+
thick = debias(thick, "Brown_Hair", df, pinverse, device)
|
| 248 |
+
thick = debias(thick, "Pale_Skin", df, pinverse, device)
|
| 249 |
+
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
|
| 250 |
|
| 251 |
class CustomImageDataset(Dataset):
|
| 252 |
def __init__(self, images, transform=None):
|
|
|
|
| 479 |
outputs = [input_image, file_output])
|
| 480 |
|
| 481 |
|
| 482 |
+
sample.click(fn=sample_then_run, outputs=[input_image, file_output])
|
| 483 |
|
| 484 |
submit.click(
|
| 485 |
fn=edit_inference, inputs=[prompt, negative_prompt, cfg, steps, seed, injection_step, a1, a2, a3, a4], outputs=[gallery]
|