Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import sys
|
| 3 |
+
import os
|
| 4 |
+
import tqdm
|
| 5 |
+
sys.path.append(os.path.abspath(os.path.join("", "..")))
|
| 6 |
+
import torch
|
| 7 |
+
import gc
|
| 8 |
+
import warnings
|
| 9 |
+
warnings.filterwarnings("ignore")
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from utils import load_models, save_model_w2w, save_model_for_diffusers
|
| 12 |
+
from sampling import sample_weights
|
| 13 |
+
from huggingface_hub import snapshot_download
|
| 14 |
+
|
| 15 |
+
global device
|
| 16 |
+
global generator
|
| 17 |
+
global unet
|
| 18 |
+
global vae
|
| 19 |
+
global text_encoder
|
| 20 |
+
global tokenizer
|
| 21 |
+
global noise_scheduler
|
| 22 |
+
device = "cuda:0"
|
| 23 |
+
generator = torch.Generator(device=device)
|
| 24 |
+
|
| 25 |
+
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
| 26 |
+
|
| 27 |
+
mean = torch.load(f"{models_path}/mean.pt").bfloat16().to(device)
|
| 28 |
+
std = torch.load(f"{models_path}/std.pt").bfloat16().to(device)
|
| 29 |
+
v = torch.load(f"{models_path}/V.pt").bfloat16().to(device)
|
| 30 |
+
proj = torch.load(f"{models_path}/proj_1000pc.pt").bfloat16().to(device)
|
| 31 |
+
df = torch.load(f"{models_path}/identity_df.pt")
|
| 32 |
+
weight_dimensions = torch.load(f"{models_path}/weight_dimensions.pt")
|
| 33 |
+
|
| 34 |
+
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device)
|
| 35 |
+
|
| 36 |
+
global network
|
| 37 |
+
|
| 38 |
+
def sample_model():
|
| 39 |
+
global unet
|
| 40 |
+
del unet
|
| 41 |
+
global network
|
| 42 |
+
unet, _, _, _, _ = load_models(device)
|
| 43 |
+
network = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00)
|
| 44 |
+
|
| 45 |
+
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
| 46 |
+
global device
|
| 47 |
+
global generator
|
| 48 |
+
global unet
|
| 49 |
+
global vae
|
| 50 |
+
global text_encoder
|
| 51 |
+
global tokenizer
|
| 52 |
+
global noise_scheduler
|
| 53 |
+
generator = generator.manual_seed(seed)
|
| 54 |
+
latents = torch.randn(
|
| 55 |
+
(1, unet.in_channels, 512 // 8, 512 // 8),
|
| 56 |
+
generator = generator,
|
| 57 |
+
device = device
|
| 58 |
+
).bfloat16()
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 62 |
+
|
| 63 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
| 64 |
+
|
| 65 |
+
max_length = text_input.input_ids.shape[-1]
|
| 66 |
+
uncond_input = tokenizer(
|
| 67 |
+
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 68 |
+
)
|
| 69 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
| 70 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 71 |
+
noise_scheduler.set_timesteps(ddim_steps)
|
| 72 |
+
latents = latents * noise_scheduler.init_noise_sigma
|
| 73 |
+
|
| 74 |
+
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
| 75 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 76 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
| 77 |
+
with network:
|
| 78 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
| 79 |
+
#guidance
|
| 80 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 81 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 82 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 83 |
+
|
| 84 |
+
latents = 1 / 0.18215 * latents
|
| 85 |
+
image = vae.decode(latents).sample
|
| 86 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 87 |
+
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
| 88 |
+
|
| 89 |
+
image = Image.fromarray((image * 255).round().astype("uint8"))
|
| 90 |
+
|
| 91 |
+
return [image]
|
| 92 |
+
|
| 93 |
+
with gr.Blocks(css=css) as demo:
|
| 94 |
+
gr.Markdown("# <em>weights2weights</em> Demo")
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column():
|
| 97 |
+
files = gr.Files(
|
| 98 |
+
label="Upload a photo of your face to invert, or sample a new model",
|
| 99 |
+
file_types=["image"]
|
| 100 |
+
)
|
| 101 |
+
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
|
| 102 |
+
|
| 103 |
+
sample = gr.Button("Sample New Model")
|
| 104 |
+
|
| 105 |
+
with gr.Column(visible=False) as clear_button:
|
| 106 |
+
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
|
| 107 |
+
prompt = gr.Textbox(label="Prompt",
|
| 108 |
+
info="Make sure to include 'sks person'" ,
|
| 109 |
+
placeholder="sks person",
|
| 110 |
+
value="sks person")
|
| 111 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, cartoon", value="low quality, blurry, unfinished, cartoon")
|
| 112 |
+
seed = gr.Number(value=5, precision=0, label="Seed", interactive=True)
|
| 113 |
+
cfg = gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
|
| 114 |
+
steps = gr.Slider(label="Inference Steps", precision=0, value=50, step=1, minimum=0, maximum=100, interactive=True)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
submit = gr.Button("Submit")
|
| 118 |
+
|
| 119 |
+
with gr.Column():
|
| 120 |
+
gallery = gr.Gallery(label="Generated Images")
|
| 121 |
+
|
| 122 |
+
sample.click(fn=sample_model)
|
| 123 |
+
|
| 124 |
+
submit.click(fn=inference,
|
| 125 |
+
inputs=[prompt, negative_prompt, cfg, steps, seed],
|
| 126 |
+
outputs=gallery)
|
| 127 |
+
|
| 128 |
+
demo.launch(share=True)
|