Spaces:
Sleeping
Sleeping
| import requests | |
| import gradio as gr | |
| import torch | |
| from timm import create_model | |
| from timm.data import resolve_data_config | |
| from timm.data.transforms_factory import create_transform | |
| IMAGENET_1k_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt" | |
| LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n') | |
| model = create_model('resnet50', pretrained=True) | |
| transform = create_transform( | |
| **resolve_data_config({}, model=model) | |
| ) | |
| model.eval() | |
| def predict_fn(img): | |
| img = img.convert('RGB') | |
| img = transform(img).unsqueeze(0) | |
| with torch.no_grad(): | |
| out = model(img) | |
| probabilites = torch.nn.functional.softmax(out[0], dim=0) | |
| values, indices = torch.topk(probabilites, k=5) | |
| return {LABELS[i]: v.item() for i, v in zip(indices, values)} | |
| gr.Interface(predict_fn, gr.components.Image(type='pil'), outputs='label').launch() | |