Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
-
|
| 4 |
# Initialize the text generation pipeline
|
| 5 |
pipe = pipeline("text-generation", model="Qwen/Qwen2.5-0.5B-Instruct", device=-1)
|
| 6 |
-
|
| 7 |
# Streamlit app
|
| 8 |
st.title("Text Generation with Qwen Model")
|
| 9 |
|
|
@@ -15,7 +15,7 @@ if st.button("Generate"):
|
|
| 15 |
messages = [{"role": "user", "content": user_input}]
|
| 16 |
output = pipe(messages, max_new_tokens=50) # Adjust max_new_tokens as needed
|
| 17 |
generated_text = output[0]['generated_text']
|
| 18 |
-
|
| 19 |
# Display the generated text
|
| 20 |
st.write("Generated Response:")
|
| 21 |
-
st.write(
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 4 |
# Initialize the text generation pipeline
|
| 5 |
pipe = pipeline("text-generation", model="Qwen/Qwen2.5-0.5B-Instruct", device=-1)
|
| 6 |
+
parser = StrOutputParser()
|
| 7 |
# Streamlit app
|
| 8 |
st.title("Text Generation with Qwen Model")
|
| 9 |
|
|
|
|
| 15 |
messages = [{"role": "user", "content": user_input}]
|
| 16 |
output = pipe(messages, max_new_tokens=50) # Adjust max_new_tokens as needed
|
| 17 |
generated_text = output[0]['generated_text']
|
| 18 |
+
result = parser.invoke(generated_text)
|
| 19 |
# Display the generated text
|
| 20 |
st.write("Generated Response:")
|
| 21 |
+
st.write(result)
|