Spaces:
Runtime error
Runtime error
Upload control_app.py
Browse files- control_app.py +131 -0
control_app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
!git clone https://huggingface.co/spaces/radames/SPIGA-face-alignment-headpose-estimator
|
| 3 |
+
!cp -r SPIGA-face-alignment-headpose-estimator/SPIGA .
|
| 4 |
+
!pip install -r SPIGA/requirements.txt
|
| 5 |
+
!pip install datasets
|
| 6 |
+
!huggingface-cli login
|
| 7 |
+
'''
|
| 8 |
+
from pred_color import *
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
from diffusers import (
|
| 12 |
+
AutoencoderKL,
|
| 13 |
+
ControlNetModel,
|
| 14 |
+
DDPMScheduler,
|
| 15 |
+
StableDiffusionControlNetPipeline,
|
| 16 |
+
UNet2DConditionModel,
|
| 17 |
+
UniPCMultistepScheduler,
|
| 18 |
+
)
|
| 19 |
+
import torch
|
| 20 |
+
from diffusers.utils import load_image
|
| 21 |
+
|
| 22 |
+
controlnet_model_name_or_path = "svjack/ControlNet-Face-Zh"
|
| 23 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_model_name_or_path)
|
| 24 |
+
#controlnet = controlnet.to("cuda")
|
| 25 |
+
|
| 26 |
+
base_model_path = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1"
|
| 27 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 28 |
+
base_model_path, controlnet=controlnet,
|
| 29 |
+
#torch_dtype=torch.float16
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# speed up diffusion process with faster scheduler and memory optimization
|
| 33 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 34 |
+
#pipe.enable_model_cpu_offload()
|
| 35 |
+
#pipe = pipe.to("cuda")
|
| 36 |
+
|
| 37 |
+
if torch.cuda.is_available():
|
| 38 |
+
pipe = pipe.to("cuda")
|
| 39 |
+
else:
|
| 40 |
+
#pipe.enable_model_cpu_offload()
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
example_sample = [
|
| 44 |
+
["Protector_Cromwell_style.png", "戴帽子穿灰色衣服的男子"]
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
from PIL import Image
|
| 48 |
+
def pred_func(image, prompt):
|
| 49 |
+
out = single_pred_features(image)
|
| 50 |
+
if type(out) == type({}):
|
| 51 |
+
#return out["spiga_seg"]
|
| 52 |
+
control_image = out["spiga_seg"]
|
| 53 |
+
if type(image) == type("") and os.path.exists(image):
|
| 54 |
+
image = Image.open(image).convert("RGB")
|
| 55 |
+
elif hasattr(image, "shape"):
|
| 56 |
+
image = Image.fromarray(image).convert("RGB")
|
| 57 |
+
else:
|
| 58 |
+
image = image.convert("RGB")
|
| 59 |
+
image = image.resize((512, 512))
|
| 60 |
+
|
| 61 |
+
generator = torch.manual_seed(0)
|
| 62 |
+
image = pipe(
|
| 63 |
+
prompt, num_inference_steps=50,
|
| 64 |
+
generator=generator, image=control_image
|
| 65 |
+
).images[0]
|
| 66 |
+
return control_image ,image
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
gr=gr.Interface(fn=pred_func, inputs=['image','text'],
|
| 70 |
+
outputs=[gr.Image(label='output').style(height=512),
|
| 71 |
+
gr.Image(label='output').style(height=512)],
|
| 72 |
+
examples=example_sample if example_sample else None,
|
| 73 |
+
)
|
| 74 |
+
gr.launch(share=False)
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
'''
|
| 78 |
+
control_image = load_image("./conditioning_image_1.png")
|
| 79 |
+
prompt = "戴眼镜的中年男子"
|
| 80 |
+
# generate image
|
| 81 |
+
generator = torch.manual_seed(0)
|
| 82 |
+
image = pipe(
|
| 83 |
+
prompt, num_inference_steps=50, generator=generator, image=control_image
|
| 84 |
+
).images[0]
|
| 85 |
+
image
|
| 86 |
+
|
| 87 |
+
control_image = load_image("./conditioning_image_1.png")
|
| 88 |
+
prompt = "穿蓝色衣服的秃头男子"
|
| 89 |
+
# generate image
|
| 90 |
+
generator = torch.manual_seed(0)
|
| 91 |
+
image = pipe(
|
| 92 |
+
prompt, num_inference_steps=50, generator=generator, image=control_image
|
| 93 |
+
).images[0]
|
| 94 |
+
image
|
| 95 |
+
|
| 96 |
+
control_image = load_image("./conditioning_image_2.png")
|
| 97 |
+
prompt = "金色头发的美丽女子"
|
| 98 |
+
# generate image
|
| 99 |
+
generator = torch.manual_seed(0)
|
| 100 |
+
image = pipe(
|
| 101 |
+
prompt, num_inference_steps=50, generator=generator, image=control_image
|
| 102 |
+
).images[0]
|
| 103 |
+
image
|
| 104 |
+
|
| 105 |
+
control_image = load_image("./conditioning_image_2.png")
|
| 106 |
+
prompt = "绿色运动衫的男子"
|
| 107 |
+
# generate image
|
| 108 |
+
generator = torch.manual_seed(0)
|
| 109 |
+
image = pipe(
|
| 110 |
+
prompt, num_inference_steps=50, generator=generator, image=control_image
|
| 111 |
+
).images[0]
|
| 112 |
+
image
|
| 113 |
+
|
| 114 |
+
from huggingface_hub import HfApi
|
| 115 |
+
hf_api = HfApi()
|
| 116 |
+
|
| 117 |
+
hf_api.upload_file(
|
| 118 |
+
path_or_fileobj = "TSD_save_only/diffusion_pytorch_model.bin",
|
| 119 |
+
path_in_repo = "diffusion_pytorch_model.bin",
|
| 120 |
+
repo_id = "svjack/ControlNet-Face-Zh",
|
| 121 |
+
repo_type = "model",
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
hf_api.upload_file(
|
| 125 |
+
path_or_fileobj = "TSD_save_only/config.json",
|
| 126 |
+
path_in_repo = "config.json",
|
| 127 |
+
repo_id = "svjack/ControlNet-Face-Zh",
|
| 128 |
+
repo_type = "model",
|
| 129 |
+
)
|
| 130 |
+
'''
|
| 131 |
+
pass
|