Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,30 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import chromadb
|
| 3 |
import torch
|
| 4 |
-
from transformers import pipeline
|
|
|
|
| 5 |
from PyPDF2 import PdfReader
|
| 6 |
import os
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
# Initialize Hugging Face pipeline for question answering
|
| 9 |
def load_qa_pipeline():
|
| 10 |
return pipeline("question-answering", model="deepset/roberta-base-squad2")
|
|
@@ -24,8 +44,8 @@ def split_text_into_chunks(text, chunk_size=500, overlap=100):
|
|
| 24 |
chunks.append(text[i:i+chunk_size])
|
| 25 |
return chunks
|
| 26 |
|
| 27 |
-
# Create ChromaDB collection
|
| 28 |
-
def create_chroma_collection(chunks):
|
| 29 |
# Use persistent client to avoid memory issues
|
| 30 |
client = chromadb.PersistentClient(path="./chroma_db")
|
| 31 |
|
|
@@ -35,19 +55,27 @@ def create_chroma_collection(chunks):
|
|
| 35 |
# Create collection
|
| 36 |
collection = client.create_collection(name=collection_name)
|
| 37 |
|
| 38 |
-
# Add chunks to collection
|
| 39 |
for i, chunk in enumerate(chunks):
|
|
|
|
|
|
|
|
|
|
| 40 |
collection.add(
|
| 41 |
ids=[f"chunk_{i}"],
|
| 42 |
-
documents=[chunk]
|
|
|
|
| 43 |
)
|
| 44 |
|
| 45 |
return client, collection, collection_name
|
| 46 |
|
| 47 |
# Retrieve most relevant context
|
| 48 |
-
def retrieve_context(collection, question, top_k=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
results = collection.query(
|
| 50 |
-
|
| 51 |
n_results=top_k
|
| 52 |
)
|
| 53 |
return results['documents'][0]
|
|
@@ -56,6 +84,9 @@ def retrieve_context(collection, question, top_k=3):
|
|
| 56 |
def main():
|
| 57 |
st.title("PDF Question Answering App")
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
# File uploader
|
| 60 |
uploaded_file = st.file_uploader("Upload PDF", type=['pdf'])
|
| 61 |
|
|
@@ -75,11 +106,15 @@ def main():
|
|
| 75 |
# Split text into chunks
|
| 76 |
text_chunks = split_text_into_chunks(pdf_text)
|
| 77 |
|
| 78 |
-
# Create ChromaDB collection
|
| 79 |
-
client, collection, collection_name = create_chroma_collection(
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Retrieve context
|
| 82 |
-
contexts = retrieve_context(
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Prepare answers
|
| 85 |
answers = []
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import chromadb
|
| 3 |
import torch
|
| 4 |
+
from transformers import pipeline, AutoModel, AutoTokenizer
|
| 5 |
+
import numpy as np
|
| 6 |
from PyPDF2 import PdfReader
|
| 7 |
import os
|
| 8 |
|
| 9 |
+
# Load sentence transformer model for embeddings
|
| 10 |
+
def load_embedding_model():
|
| 11 |
+
model = AutoModel.from_pretrained("cross-encoder/qnli-electra-base")
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("cross-encoder/qnli-electra-base")
|
| 13 |
+
return model, tokenizer
|
| 14 |
+
|
| 15 |
+
# Generate embeddings for text
|
| 16 |
+
def generate_embedding(model, tokenizer, text):
|
| 17 |
+
# Tokenize the text
|
| 18 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 19 |
+
|
| 20 |
+
# Generate embeddings
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
outputs = model(**inputs)
|
| 23 |
+
|
| 24 |
+
# Use the last hidden state as embedding
|
| 25 |
+
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 26 |
+
return embeddings
|
| 27 |
+
|
| 28 |
# Initialize Hugging Face pipeline for question answering
|
| 29 |
def load_qa_pipeline():
|
| 30 |
return pipeline("question-answering", model="deepset/roberta-base-squad2")
|
|
|
|
| 44 |
chunks.append(text[i:i+chunk_size])
|
| 45 |
return chunks
|
| 46 |
|
| 47 |
+
# Create ChromaDB collection with embeddings
|
| 48 |
+
def create_chroma_collection(chunks, model, tokenizer):
|
| 49 |
# Use persistent client to avoid memory issues
|
| 50 |
client = chromadb.PersistentClient(path="./chroma_db")
|
| 51 |
|
|
|
|
| 55 |
# Create collection
|
| 56 |
collection = client.create_collection(name=collection_name)
|
| 57 |
|
| 58 |
+
# Add chunks to collection with embeddings
|
| 59 |
for i, chunk in enumerate(chunks):
|
| 60 |
+
# Generate embedding for the chunk
|
| 61 |
+
embedding = generate_embedding(model, tokenizer, chunk)
|
| 62 |
+
|
| 63 |
collection.add(
|
| 64 |
ids=[f"chunk_{i}"],
|
| 65 |
+
documents=[chunk],
|
| 66 |
+
embeddings=[embedding.tolist()]
|
| 67 |
)
|
| 68 |
|
| 69 |
return client, collection, collection_name
|
| 70 |
|
| 71 |
# Retrieve most relevant context
|
| 72 |
+
def retrieve_context(collection, question, model, tokenizer, top_k=3):
|
| 73 |
+
# Generate embedding for the question
|
| 74 |
+
question_embedding = generate_embedding(model, tokenizer, question)
|
| 75 |
+
|
| 76 |
+
# Query the collection
|
| 77 |
results = collection.query(
|
| 78 |
+
query_embeddings=[question_embedding.tolist()],
|
| 79 |
n_results=top_k
|
| 80 |
)
|
| 81 |
return results['documents'][0]
|
|
|
|
| 84 |
def main():
|
| 85 |
st.title("PDF Question Answering App")
|
| 86 |
|
| 87 |
+
# Load embedding model
|
| 88 |
+
embedding_model, tokenizer = load_embedding_model()
|
| 89 |
+
|
| 90 |
# File uploader
|
| 91 |
uploaded_file = st.file_uploader("Upload PDF", type=['pdf'])
|
| 92 |
|
|
|
|
| 106 |
# Split text into chunks
|
| 107 |
text_chunks = split_text_into_chunks(pdf_text)
|
| 108 |
|
| 109 |
+
# Create ChromaDB collection with embeddings
|
| 110 |
+
client, collection, collection_name = create_chroma_collection(
|
| 111 |
+
text_chunks, embedding_model, tokenizer
|
| 112 |
+
)
|
| 113 |
|
| 114 |
# Retrieve context
|
| 115 |
+
contexts = retrieve_context(
|
| 116 |
+
collection, question, embedding_model, tokenizer
|
| 117 |
+
)
|
| 118 |
|
| 119 |
# Prepare answers
|
| 120 |
answers = []
|