Spaces:
Running
Running
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| class CDistNetLoss(nn.Module): | |
| def __init__(self, smoothing=True, ignore_index=0, **kwargs): | |
| super(CDistNetLoss, self).__init__() | |
| if ignore_index >= 0 and not smoothing: | |
| self.loss_func = nn.CrossEntropyLoss(reduction='mean', | |
| ignore_index=ignore_index) | |
| self.smoothing = smoothing | |
| def forward(self, pred, batch): | |
| pred = pred['res'] | |
| tgt = batch[1][:, 1:] | |
| pred = pred.reshape([-1, pred.shape[2]]) | |
| tgt = tgt.reshape([-1]) | |
| if self.smoothing: | |
| eps = 0.1 | |
| n_class = pred.shape[1] | |
| one_hot = F.one_hot(tgt.long(), num_classes=pred.shape[1]) | |
| torch.set_printoptions(profile='full') | |
| one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) | |
| log_prb = F.log_softmax(pred, dim=1) | |
| non_pad_mask = torch.not_equal( | |
| tgt, torch.zeros(tgt.shape, dtype=tgt.dtype, | |
| device=tgt.device)) | |
| loss = -(one_hot * log_prb).sum(dim=1) | |
| loss = loss.masked_select(non_pad_mask).mean() | |
| else: | |
| loss = self.loss_func(pred, tgt) | |
| return {'loss': loss} | |