File size: 45,993 Bytes
7449d44
 
 
 
 
 
 
 
 
 
 
2ab33ec
 
7449d44
 
2ab33ec
 
 
 
 
 
 
7449d44
 
 
 
2b5cd8c
 
7449d44
d3dc9e2
7449d44
 
 
2ab33ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
 
 
 
 
 
 
 
2ab33ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab33ec
 
 
 
 
 
 
 
 
 
 
7449d44
2ab33ec
7449d44
 
2ab33ec
7449d44
 
 
2ab33ec
 
 
 
7449d44
2ab33ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
 
 
 
 
 
 
 
d3dc9e2
 
 
 
 
 
 
2ab33ec
 
d3dc9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab33ec
 
d3dc9e2
7449d44
d3dc9e2
7449d44
2ab33ec
7449d44
 
2ab33ec
 
7449d44
 
d3dc9e2
 
 
 
 
 
7449d44
 
 
 
d3dc9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
d3dc9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
d3dc9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
 
d3dc9e2
 
 
7449d44
 
 
 
d3dc9e2
 
 
7449d44
 
2ab33ec
 
 
7449d44
d3dc9e2
7449d44
d3dc9e2
2ab33ec
 
 
7449d44
 
 
 
 
 
 
 
 
2ab33ec
 
 
 
 
 
 
 
 
 
 
 
7449d44
2ab33ec
 
 
 
 
 
 
 
7449d44
2ab33ec
7449d44
d3dc9e2
 
7449d44
 
 
d3dc9e2
 
 
 
 
2ab33ec
 
 
 
 
d3dc9e2
 
 
2ab33ec
 
 
 
 
d3dc9e2
 
7449d44
 
 
 
 
 
 
 
 
 
d3dc9e2
 
7449d44
 
2ab33ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7449d44
2ab33ec
 
7449d44
 
 
 
2ab33ec
 
 
 
 
d3dc9e2
2ab33ec
 
 
7449d44
2ab33ec
d3dc9e2
2ab33ec
 
 
 
 
 
 
 
d3dc9e2
2ab33ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3dc9e2
 
 
 
 
2ab33ec
d3dc9e2
2ab33ec
 
 
 
 
 
 
 
d3dc9e2
 
 
2ab33ec
d3dc9e2
2ab33ec
7449d44
 
 
 
d3dc9e2
 
 
 
2ab33ec
 
 
 
d3dc9e2
2ab33ec
 
 
 
 
7449d44
d3dc9e2
 
2ab33ec
 
 
 
 
 
d3dc9e2
 
2ab33ec
 
d3dc9e2
2ab33ec
 
 
 
 
 
 
 
 
7449d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
from torchvision.models.resnet import ResNet50_Weights
from PIL import Image
import numpy as np
import os
import requests
import time
import copy
from collections import OrderedDict
from pathlib import Path

# Check for available hardware acceleration
if torch.cuda.is_available():
    device = torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
    device = torch.device("mps")  # Use Apple Metal Performance Shaders for M-series Macs
else:
    device = torch.device("cpu")
print(f"Using device: {device}")

# Constants
MODEL_URLS = {
    'resnet50_robust': 'https://huggingface.co/madrylab/robust-imagenet-models/resolve/main/resnet50_l2_eps3.ckpt',
    'resnet50_standard': 'https://huggingface.co/madrylab/robust-imagenet-models/resolve/main/resnet50_l2_eps0.ckpt'
}

IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]

# Define the transforms based on whether normalization is on or off
def get_transform(input_size=224, normalize=False, norm_mean=IMAGENET_MEAN, norm_std=IMAGENET_STD):
    if normalize:
        return transforms.Compose([
            transforms.Resize(input_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            transforms.Normalize(norm_mean, norm_std),
        ])
    else:
        return transforms.Compose([
            transforms.Resize(input_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
        ])

# Default transform without normalization
transform = transforms.Compose([
    transforms.Resize(224),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
])

normalize_transform = transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)

def extract_middle_layers(model, layer_index):
    """
    Extract a subset of the model up to a specific layer.
    
    Args:
        model: The neural network model
        layer_index: String 'all' for the full model, or a layer identifier (string or int)
                    For ResNet: integers 0-8 representing specific layers
                    For ViT: strings like 'encoder.layers.encoder_layer_3'
    
    Returns:
        A modified model that outputs features from the specified layer
    """
    if isinstance(layer_index, str) and layer_index == 'all':
        return model
    
    # Special case for ViT's encoder layers with DataParallel wrapper
    if isinstance(layer_index, str) and layer_index.startswith('encoder.layers.encoder_layer_'):
        try:
            target_layer_idx = int(layer_index.split('_')[-1])
            
            # Create a deep copy of the model to avoid modifying the original
            new_model = copy.deepcopy(model)
            
            # For models wrapped in DataParallel
            if hasattr(new_model, 'module'):
                # Create a subset of encoder layers up to the specified index
                encoder_layers = nn.Sequential()
                for i in range(target_layer_idx + 1):
                    layer_name = f"encoder_layer_{i}"
                    if hasattr(new_model.module.encoder.layers, layer_name):
                        encoder_layers.add_module(layer_name, 
                                               getattr(new_model.module.encoder.layers, layer_name))
                
                # Replace the encoder layers with our truncated version
                new_model.module.encoder.layers = encoder_layers
                
                # Remove the heads since we're stopping at the encoder layer
                new_model.module.heads = nn.Identity()
                
                return new_model
            else:
                # Direct model access (not DataParallel)
                encoder_layers = nn.Sequential()
                for i in range(target_layer_idx + 1):
                    layer_name = f"encoder_layer_{i}"
                    if hasattr(new_model.encoder.layers, layer_name):
                        encoder_layers.add_module(layer_name, 
                                               getattr(new_model.encoder.layers, layer_name))
                
                # Replace the encoder layers with our truncated version
                new_model.encoder.layers = encoder_layers
                
                # Remove the heads since we're stopping at the encoder layer
                new_model.heads = nn.Identity()
                
                return new_model
                
        except (ValueError, IndexError) as e:
            raise ValueError(f"Invalid ViT layer specification: {layer_index}. Error: {e}")
    
    # Handling for ViT whole blocks
    elif hasattr(model, 'blocks') or (hasattr(model, 'module') and hasattr(model.module, 'blocks')):
        # Check for DataParallel wrapper
        base_model = model.module if hasattr(model, 'module') else model
        
        # Create a deep copy to avoid modifying the original
        new_model = copy.deepcopy(model)
        base_new_model = new_model.module if hasattr(new_model, 'module') else new_model
        
        # Add the desired number of transformer blocks
        if isinstance(layer_index, int):
            # Truncate the blocks
            base_new_model.blocks = base_new_model.blocks[:layer_index+1]
            
        return new_model
    
    else:
        # Original ResNet/VGG handling
        modules = list(model.named_children())
        print(f"DEBUG - extract_middle_layers - Looking for '{layer_index}' in {[name for name, _ in modules]}")
        
        cutoff_idx = next((i for i, (name, _) in enumerate(modules) 
                          if name == str(layer_index)), None)
        
        if cutoff_idx is not None:
            # Keep modules up to and including the target
            new_model = nn.Sequential(OrderedDict(modules[:cutoff_idx+1]))
            return new_model
        else:
            raise ValueError(f"Module {layer_index} not found in model")

# Get ImageNet labels
def get_imagenet_labels():
    url = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
    response = requests.get(url)
    if response.status_code == 200:
        return response.json()
    else:
        raise RuntimeError("Failed to fetch ImageNet labels")

# Download model if needed
def download_model(model_type):
    if model_type not in MODEL_URLS or MODEL_URLS[model_type] is None:
        return None  # Use PyTorch's pretrained model
    
    model_path = Path(f"models/{model_type}.pt")
    if not model_path.exists():
        print(f"Downloading {model_type} model...")
        url = MODEL_URLS[model_type]
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(model_path, 'wb') as f:
                for chunk in response.iter_content(chunk_size=8192):
                    f.write(chunk)
            print(f"Model downloaded and saved to {model_path}")
        else:
            raise RuntimeError(f"Failed to download model: {response.status_code}")
    return model_path

class NormalizeByChannelMeanStd(nn.Module):
    def __init__(self, mean, std):
        super(NormalizeByChannelMeanStd, self).__init__()
        if not isinstance(mean, torch.Tensor):
            mean = torch.tensor(mean)
        if not isinstance(std, torch.Tensor):
            std = torch.tensor(std)
        self.register_buffer("mean", mean)
        self.register_buffer("std", std)
        
    def forward(self, tensor):
        return self.normalize_fn(tensor, self.mean, self.std)
    
    def normalize_fn(self, tensor, mean, std):
        """Differentiable version of torchvision.functional.normalize"""
        # here we assume the color channel is at dim=1
        mean = mean[None, :, None, None]
        std = std[None, :, None, None]
        return tensor.sub(mean).div(std)

class InferStep:
    def __init__(self, orig_image, eps, step_size):
        self.orig_image = orig_image
        self.eps = eps
        self.step_size = step_size

    def project(self, x):
        diff = x - self.orig_image
        diff = torch.clamp(diff, -self.eps, self.eps)
        return torch.clamp(self.orig_image + diff, 0, 1)

    def step(self, x, grad):
        l = len(x.shape) - 1
        grad_norm = torch.norm(grad.view(grad.shape[0], -1), dim=1).view(-1, *([1]*l))
        scaled_grad = grad / (grad_norm + 1e-10)
        return scaled_grad * self.step_size

def get_inference_configs(inference_type='IncreaseConfidence', eps=0.5, n_itr=50, step_size=1.0):
    """Generate inference configuration with customizable parameters.
    
    Args:
        inference_type (str): Type of inference ('IncreaseConfidence' or 'ReverseDiffusion')
        eps (float): Maximum perturbation size
        n_itr (int): Number of iterations
        step_size (float): Step size for each iteration
    """
    
    # Base configuration common to all inference types
    config = {
        'loss_infer': inference_type,  # How to guide the optimization
        'n_itr': n_itr,  # Number of iterations
        'eps': eps,  # Maximum perturbation size
        'step_size': step_size,  # Step size for each iteration
        'diffusion_noise_ratio': 0.0,  # No diffusion noise
        'initial_inference_noise_ratio': 0.0,  # No initial noise
        'top_layer': 'all',  # Use all layers of the model
        'inference_normalization': False,  # Apply normalization during inference
        'recognition_normalization': False,  # Apply normalization during recognition
        'iterations_to_show': [1, 5, 10, 20, 30, 40, 50, n_itr],  # Specific iterations to visualize
        'misc_info': {'keep_grads': False}  # Additional configuration
    }
    
    # Customize based on inference type
    if inference_type == 'IncreaseConfidence':
        config['loss_function'] = 'CE'  # Cross Entropy
    
    elif inference_type == 'ReverseDiffusion':
        config['loss_function'] = 'MSE'  # Mean Square Error
        config['initial_inference_noise_ratio'] = 0.05  # Initial noise for diffusion
        config['diffusion_noise_ratio'] = 0.01  # Add noise during diffusion
    
    elif inference_type == 'GradModulation':
        config['loss_function'] = 'CE'  # Cross Entropy
        config['misc_info']['grad_modulation'] = 0.5  # Gradient modulation strength
    
    elif inference_type == 'CompositionalFusion':
        config['loss_function'] = 'CE'  # Cross Entropy
        config['misc_info']['positive_classes'] = []  # Classes to maximize
        config['misc_info']['negative_classes'] = []  # Classes to minimize
    
    return config

class GenerativeInferenceModel:
    def __init__(self):
        self.models = {}
        self.normalizer = NormalizeByChannelMeanStd(IMAGENET_MEAN, IMAGENET_STD).to(device)
        self.labels = get_imagenet_labels()
        
    def verify_model_integrity(self, model, model_type):
        """
        Verify model integrity by running a test input through it.
        Returns whether the model passes basic integrity check.
        """
        try:
            print(f"\n=== Running model integrity check for {model_type} ===")
            # Create a deterministic test input directly on the correct device
            test_input = torch.zeros(1, 3, 224, 224, device=device)
            test_input[0, 0, 100:124, 100:124] = 0.5  # Red square
            
            # Run forward pass
            with torch.no_grad():
                output = model(test_input)
            
            # Check output shape
            if output.shape != (1, 1000):
                print(f"❌ Unexpected output shape: {output.shape}, expected (1, 1000)")
                return False
                
            # Get top prediction
            probs = torch.nn.functional.softmax(output, dim=1)
            confidence, prediction = torch.max(probs, 1)
            
            # Calculate basic statistics on output
            mean = output.mean().item()
            std = output.std().item()
            min_val = output.min().item()
            max_val = output.max().item()
            
            print(f"Model integrity check results:")
            print(f"- Output shape: {output.shape}")
            print(f"- Top prediction: Class {prediction.item()} with {confidence.item()*100:.2f}% confidence")
            print(f"- Output statistics: mean={mean:.3f}, std={std:.3f}, min={min_val:.3f}, max={max_val:.3f}")
            
            # Basic sanity checks
            if torch.isnan(output).any():
                print("❌ Model produced NaN outputs")
                return False
                
            if output.std().item() < 0.1:
                print("⚠️ Low output variance, model may not be discriminative")
                
            print("✅ Model passes basic integrity check")
            return True
            
        except Exception as e:
            print(f"❌ Model integrity check failed with error: {e}")
            # Rather than failing completely, we'll continue
            return True
    
    def load_model(self, model_type):
        """Load model from checkpoint or use pretrained model."""
        if model_type in self.models:
            print(f"Using cached {model_type} model")
            return self.models[model_type]
        
        # Record loading time for performance analysis
        start_time = time.time()
        model_path = download_model(model_type)
        
        # Create a sequential model with normalizer and ResNet50
        resnet = models.resnet50()
        model = nn.Sequential(
            self.normalizer,  # Normalizer is part of the model sequence
            resnet
        )
        
        # Load the model checkpoint
        if model_path:
            print(f"Loading {model_type} model from {model_path}...")
            try:
                checkpoint = torch.load(model_path, map_location=device)
                
                # Print checkpoint structure for better understanding
                print("\n=== Analyzing checkpoint structure ===")
                if isinstance(checkpoint, dict):
                    print(f"Checkpoint contains keys: {list(checkpoint.keys())}")
                    
                    # Examine 'model' structure if it exists
                    if 'model' in checkpoint and isinstance(checkpoint['model'], dict):
                        model_dict = checkpoint['model']
                        # Get sample of keys to understand structure
                        first_keys = list(model_dict.keys())[:5]
                        print(f"'model' contains keys like: {first_keys}")
                        
                        # Check for common prefixes in the model dict
                        prefixes = set()
                        for key in list(model_dict.keys())[:100]:  # Check first 100 keys
                            parts = key.split('.')
                            if len(parts) > 1:
                                prefixes.add(parts[0])
                        if prefixes:
                            print(f"Common prefixes in model dict: {prefixes}")
                else:
                    print(f"Checkpoint is not a dictionary, but a {type(checkpoint)}")
                
                # Handle different checkpoint formats
                if 'model' in checkpoint:
                    # Format from madrylab robust models
                    state_dict = checkpoint['model']
                    print("Using 'model' key from checkpoint")
                elif 'state_dict' in checkpoint:
                    state_dict = checkpoint['state_dict']
                    print("Using 'state_dict' key from checkpoint")
                else:
                    # Direct state dict
                    state_dict = checkpoint
                    print("Using checkpoint directly as state_dict")
                
                # Handle prefix in state dict keys for ResNet part
                resnet_state_dict = {}
                prefixes_to_try = ['', 'module.', 'model.', 'attacker.model.']
                resnet_keys = set(resnet.state_dict().keys())
                
                # First check if we can find keys directly in the attacker.model path
                print("\n=== Phase 1: Checking for specific model structures ===")
                
                # Check for 'module.model' structure (seen in actual checkpoint)
                module_model_keys = [key for key in state_dict.keys() if key.startswith('module.model.')]
                if module_model_keys:
                    print(f"Found 'module.model' structure with {len(module_model_keys)} parameters")
                    # Extract all parameters from module.model
                    for source_key, value in state_dict.items():
                        if source_key.startswith('module.model.'):
                            target_key = source_key[len('module.model.'):]
                            resnet_state_dict[target_key] = value
                            
                    print(f"Extracted {len(resnet_state_dict)} parameters from module.model")
                
                # Check for 'attacker.model' structure
                attacker_model_keys = [key for key in state_dict.keys() if key.startswith('attacker.model.')]
                if attacker_model_keys:
                    print(f"Found 'attacker.model' structure with {len(attacker_model_keys)} parameters")
                    # Extract all parameters from attacker.model
                    for source_key, value in state_dict.items():
                        if source_key.startswith('attacker.model.'):
                            target_key = source_key[len('attacker.model.'):]
                            resnet_state_dict[target_key] = value
                            
                    print(f"Extracted {len(resnet_state_dict)} parameters from attacker.model")
                    
                    # Check if 'model' (not attacker.model) exists as a fallback
                    model_keys = [key for key in state_dict.keys() if key.startswith('model.') and not key.startswith('attacker.model.')]
                    if model_keys and len(resnet_state_dict) < len(resnet_keys):
                        print(f"Found additional 'model.' structure with {len(model_keys)} parameters")
                        # Try to complete missing parameters
                        for source_key, value in state_dict.items():
                            if source_key.startswith('model.'):
                                target_key = source_key[len('model.'):]
                                if target_key in resnet_keys and target_key not in resnet_state_dict:
                                    resnet_state_dict[target_key] = value
                                    
                else:
                    # Check for other known structures
                    structure_found = False
                    
                    # Check for 'model.' prefix
                    model_keys = [key for key in state_dict.keys() if key.startswith('model.')]
                    if model_keys:
                        print(f"Found 'model.' structure with {len(model_keys)} parameters")
                        for source_key, value in state_dict.items():
                            if source_key.startswith('model.'):
                                target_key = source_key[len('model.'):]
                                resnet_state_dict[target_key] = value
                        structure_found = True
                    
                    # Check for ResNet parameters at the top level
                    top_level_resnet_keys = 0
                    for key in resnet_keys:
                        if key in state_dict:
                            top_level_resnet_keys += 1
                            
                    if top_level_resnet_keys > 0:
                        print(f"Found {top_level_resnet_keys} ResNet parameters at top level")
                        for target_key in resnet_keys:
                            if target_key in state_dict:
                                resnet_state_dict[target_key] = state_dict[target_key]
                        structure_found = True
                    
                    # If no structure was recognized, try the prefix mapping approach
                    if not structure_found:
                        print("No standard model structure found, trying prefix mappings...")
                        for target_key in resnet_keys:
                            for prefix in prefixes_to_try:
                                source_key = prefix + target_key
                                if source_key in state_dict:
                                    resnet_state_dict[target_key] = state_dict[source_key]
                                    break
                
                # If we still can't find enough keys, try a final approach of removing prefixes
                if len(resnet_state_dict) < len(resnet_keys):
                    print(f"Found only {len(resnet_state_dict)}/{len(resnet_keys)} parameters, trying prefix removal...")
                    
                    # Track matches found through prefix removal
                    prefix_matches = {prefix: 0 for prefix in ['module.', 'model.', 'attacker.model.', 'attacker.']}
                    layer_matches = {}  # Track matches by layer type
                    
                    # Count parameter keys by layer type for analysis
                    for key in resnet_keys:
                        layer_name = key.split('.')[0] if '.' in key else key
                        if layer_name not in layer_matches:
                            layer_matches[layer_name] = {'total': 0, 'matched': 0}
                        layer_matches[layer_name]['total'] += 1
                    
                    # Try keys with common prefixes
                    for source_key, value in state_dict.items():
                        # Skip if already found
                        target_key = source_key
                        matched_prefix = None
                        
                        # Try removing various prefixes
                        for prefix in ['module.', 'model.', 'attacker.model.', 'attacker.']:
                            if source_key.startswith(prefix):
                                target_key = source_key[len(prefix):]
                                matched_prefix = prefix
                                break
                        
                        # If the target key is in the ResNet keys, add it to the state dict
                        if target_key in resnet_keys and target_key not in resnet_state_dict:
                            resnet_state_dict[target_key] = value
                            
                            # Update match statistics
                            if matched_prefix:
                                prefix_matches[matched_prefix] += 1
                            
                            # Update layer matches
                            layer_name = target_key.split('.')[0] if '.' in target_key else target_key
                            if layer_name in layer_matches:
                                layer_matches[layer_name]['matched'] += 1
                    
                    # Print detailed prefix removal statistics
                    print("\n=== Prefix Removal Statistics ===")
                    total_matches = sum(prefix_matches.values())
                    print(f"Total parameters matched through prefix removal: {total_matches}/{len(resnet_keys)} ({(total_matches/len(resnet_keys))*100:.1f}%)")
                    
                    # Show matches by prefix
                    print("\nMatches by prefix:")
                    for prefix, count in sorted(prefix_matches.items(), key=lambda x: x[1], reverse=True):
                        if count > 0:
                            print(f"  {prefix}: {count} parameters")
                    
                    # Show matches by layer type
                    print("\nMatches by layer type:")
                    for layer, stats in sorted(layer_matches.items(), key=lambda x: x[1]['total'], reverse=True):
                        match_percent = (stats['matched'] / stats['total']) * 100 if stats['total'] > 0 else 0
                        print(f"  {layer}: {stats['matched']}/{stats['total']} ({match_percent:.1f}%)")
                    
                    # Check for specific important layers (conv1, layer1, etc.)
                    critical_layers = ['conv1', 'bn1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']
                    print("\nStatus of critical layers:")
                    for layer in critical_layers:
                        if layer in layer_matches:
                            match_percent = (layer_matches[layer]['matched'] / layer_matches[layer]['total']) * 100
                            status = "✅ COMPLETE" if layer_matches[layer]['matched'] == layer_matches[layer]['total'] else "⚠️ INCOMPLETE"
                            print(f"  {layer}: {layer_matches[layer]['matched']}/{layer_matches[layer]['total']} ({match_percent:.1f}%) - {status}")
                        else:
                            print(f"  {layer}: Not found in model")
                
                # Load the ResNet state dict
                if resnet_state_dict:
                    try:
                        # Use strict=False to allow missing keys
                        result = resnet.load_state_dict(resnet_state_dict, strict=False)
                        missing_keys, unexpected_keys = result
                        
                        # Generate detailed information with better formatting
                        loading_report = []
                        loading_report.append(f"\n===== MODEL LOADING REPORT: {model_type} =====")
                        loading_report.append(f"Total parameters in checkpoint: {len(resnet_state_dict):,}")
                        loading_report.append(f"Total parameters in model: {len(resnet.state_dict()):,}")
                        loading_report.append(f"Missing keys: {len(missing_keys):,} parameters")
                        loading_report.append(f"Unexpected keys: {len(unexpected_keys):,} parameters")

                        # Calculate percentage of parameters loaded
                        loaded_keys = set(resnet_state_dict.keys()) - set(unexpected_keys)
                        loaded_percent = (len(loaded_keys) / len(resnet.state_dict())) * 100
                        
                        # Determine loading success status
                        if loaded_percent >= 99.5:
                            status = "✅ COMPLETE - All important parameters loaded"
                        elif loaded_percent >= 90:
                            status = "🟡 PARTIAL - Most parameters loaded, should still function"
                        elif loaded_percent >= 50:
                            status = "⚠️ INCOMPLETE - Many parameters missing, may not function properly"
                        else:
                            status = "❌ FAILED - Critical parameters missing, will not function properly"
                            
                        loading_report.append(f"Successfully loaded: {len(loaded_keys):,} parameters ({loaded_percent:.1f}%)")
                        loading_report.append(f"Loading status: {status}")
                        
                        # If loading is severely incomplete, fall back to PyTorch's pretrained model
                        if loaded_percent < 50:
                            loading_report.append("\n⚠️ WARNING: Loading from checkpoint is too incomplete.")
                            loading_report.append("⚠️ Falling back to PyTorch's pretrained model to avoid broken inference.")
                            
                            # Create a new ResNet model with pretrained weights
                            resnet = models.resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
                            model = nn.Sequential(self.normalizer, resnet)
                            loading_report.append("✅ Successfully loaded PyTorch's pretrained ResNet50 model")
                        
                        # Show missing keys by layer type
                        if missing_keys:
                            loading_report.append("\nMissing keys by layer type:")
                            layer_types = {}
                            for key in missing_keys:
                                # Extract layer type (e.g., 'conv', 'bn', 'layer1', etc.)
                                parts = key.split('.')
                                if len(parts) > 0:
                                    layer_type = parts[0]
                                    if layer_type not in layer_types:
                                        layer_types[layer_type] = 0
                                    layer_types[layer_type] += 1
                            
                            # Add counts by layer type
                            for layer_type, count in sorted(layer_types.items(), key=lambda x: x[1], reverse=True):
                                loading_report.append(f"  {layer_type}: {count:,} parameters")
                                
                            loading_report.append("\nFirst 10 missing keys:")
                            for i, key in enumerate(sorted(missing_keys)[:10]):
                                loading_report.append(f"  {i+1}. {key}")
                        
                        # Show unexpected keys if any
                        if unexpected_keys:
                            loading_report.append("\nFirst 10 unexpected keys:")
                            for i, key in enumerate(sorted(unexpected_keys)[:10]):
                                loading_report.append(f"  {i+1}. {key}")
                                
                        loading_report.append("========================================")
                        
                        # Convert report to string and print it
                        report_text = "\n".join(loading_report)
                        print(report_text)
                        
                        # Also save to a file for reference
                        os.makedirs("logs", exist_ok=True)
                        with open(f"logs/model_loading_{model_type}.log", "w") as f:
                            f.write(report_text)
                        
                        # Look for normalizer parameters as well
                        if any(key.startswith('attacker.normalize.') for key in state_dict.keys()):
                            norm_state_dict = {}
                            for key, value in state_dict.items():
                                if key.startswith('attacker.normalize.'):
                                    norm_key = key[len('attacker.normalize.'):]
                                    norm_state_dict[norm_key] = value
                            
                            if norm_state_dict:
                                try:
                                    self.normalizer.load_state_dict(norm_state_dict, strict=False)
                                    print("Successfully loaded normalizer parameters")
                                except Exception as e:
                                    print(f"Warning: Could not load normalizer parameters: {e}")
                    except Exception as e:
                        print(f"Warning: Error loading ResNet parameters: {e}")
                        # Fall back to loading without normalizer
                        model = resnet  # Use just the ResNet model without normalizer
            except Exception as e:
                print(f"Error loading model checkpoint: {e}")
                # Fallback to PyTorch's pretrained model
                print("Falling back to PyTorch's pretrained model")
                resnet = models.resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
                model = nn.Sequential(self.normalizer, resnet)
        else:
            # Fallback to PyTorch's pretrained model
            print("No checkpoint available, using PyTorch's pretrained model")
            resnet = models.resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
            model = nn.Sequential(self.normalizer, resnet)
        
        model = model.to(device)
        model.eval()  # Set to evaluation mode
        
        # Verify model integrity
        self.verify_model_integrity(model, model_type)
        
        # Store the model for future use
        self.models[model_type] = model
        end_time = time.time()
        load_time = end_time - start_time
        print(f"Model {model_type} loaded in {load_time:.2f} seconds")
        return model
    
    def inference(self, image, model_type, config):
        """Run generative inference on the image."""
        # Time the entire inference process
        inference_start = time.time()
        
        # Load model if not already loaded
        model = self.load_model(model_type)
        
        # Check if image is a file path
        if isinstance(image, str):
            if os.path.exists(image):
                image = Image.open(image).convert('RGB')
            else:
                raise ValueError(f"Image path does not exist: {image}")
        elif isinstance(image, torch.Tensor):
            raise ValueError(f"Image type {type(image)}, looks like already a transformed tensor")
        
        # Prepare image tensor - match original code's conditional transform
        load_start = time.time()
        use_norm = config['inference_normalization'] == 'on'
        custom_transform = get_transform(
            input_size=224, 
            normalize=use_norm, 
            norm_mean=IMAGENET_MEAN, 
            norm_std=IMAGENET_STD
        )
        
        # Special handling for GradModulation as in original
        if config['loss_infer'] == 'GradModulation' and 'misc_info' in config and 'grad_modulation' in config['misc_info']:
            grad_modulation = config['misc_info']['grad_modulation']
            image_tensor = custom_transform(image).unsqueeze(0).to(device)
            image_tensor = image_tensor * (1-grad_modulation) + grad_modulation * torch.randn_like(image_tensor).to(device)
        else:
            image_tensor = custom_transform(image).unsqueeze(0).to(device)
            
        image_tensor.requires_grad = True
        print(f"Image loaded and processed in {time.time() - load_start:.2f} seconds")
        
        # Check model structure
        is_sequential = isinstance(model, nn.Sequential)
        
        # Get original predictions
        with torch.no_grad():
            # If the model is sequential with a normalizer, skip the normalization step
            if is_sequential and isinstance(model[0], NormalizeByChannelMeanStd):
                print("Model is sequential with normalization")
                # Get the core model part (typically at index 1 in Sequential)
                core_model = model[1]
                if config['inference_normalization']:
                    output_original = model(image_tensor)  # Model includes normalization
                else:
                    output_original = core_model(image_tensor)  # Model includes normalization
                
            else:
                print("Model is not sequential with normalization")
                # Use manual normalization for non-sequential models
                if config['inference_normalization']:
                    normalized_tensor = normalize_transform(image_tensor)
                    output_original = model(normalized_tensor)
                else:
                    output_original = model(image_tensor)
                core_model = model
            
            probs_orig = F.softmax(output_original, dim=1)
            conf_orig, classes_orig = torch.max(probs_orig, 1)
            
            # Get least confident classes
            _, least_confident_classes = torch.topk(probs_orig, k=100, largest=False)
        
        # Initialize inference step
        infer_step = InferStep(image_tensor, config['eps'], config['step_size'])
        
        # Storage for inference steps
        # Create a new tensor that requires gradients
        x = image_tensor.clone().detach().requires_grad_(True)
        all_steps = [image_tensor[0].detach().cpu()]
        
        # For ReverseDiffusion, extract selected layer and initialize with noisy features
        noisy_features = None
        layer_model = None
        if config['loss_infer'] == 'ReverseDiffusion':
            print(f"Setting up ReverseDiffusion with layer {config['top_layer']} and noise {config['initial_inference_noise_ratio']}...")
            
            # Extract model up to the specified layer
            try:
                # Start by finding the actual model to use
                base_model = model
                
                # Handle DataParallel wrapper if present
                if hasattr(base_model, 'module'):
                    base_model = base_model.module
                
                # Log the initial model structure
                print(f"DEBUG - Initial model structure: {type(base_model)}")
                
                # If we have a Sequential model (which is likely our normalizer + model structure)
                if isinstance(base_model, nn.Sequential):
                    print(f"DEBUG - Sequential model with {len(list(base_model.children()))} children")
                    
                    # If this is our NormalizeByChannelMeanStd + ResNet pattern
                    if len(list(base_model.children())) >= 2:
                        # The actual ResNet model is the second component (index 1)
                        actual_model = list(base_model.children())[1]
                        print(f"DEBUG - Using ResNet component: {type(actual_model)}")
                        print(f"DEBUG - Available layers: {[name for name, _ in actual_model.named_children()]}")
                        
                        # Extract from the actual ResNet
                        layer_model = extract_middle_layers(actual_model, config['top_layer'])
                    else:
                        # Just a single component Sequential
                        layer_model = extract_middle_layers(base_model, config['top_layer'])
                else:
                    # Not Sequential, might be direct model
                    print(f"DEBUG - Available layers: {[name for name, _ in base_model.named_children()]}")
                    layer_model = extract_middle_layers(base_model, config['top_layer'])
                
                print(f"Successfully extracted model up to layer: {config['top_layer']}")
            except ValueError as e:
                print(f"Layer extraction failed: {e}. Using full model.")
                layer_model = model
            
            # Add noise to the image - exactly match original code
            added_noise = config['initial_inference_noise_ratio'] * torch.randn_like(image_tensor).to(device)
            noisy_image_tensor = image_tensor + added_noise
            
            # Compute noisy features - simplified to match original code
            noisy_features = layer_model(noisy_image_tensor)
            
            print(f"Noisy features computed for ReverseDiffusion target with shape: {noisy_features.shape if hasattr(noisy_features, 'shape') else 'unknown'}")
        
        # Main inference loop
        print(f"Starting inference loop with {config['n_itr']} iterations for {config['loss_infer']}...")
        loop_start = time.time()
        for i in range(config['n_itr']):
            # Reset gradients
            x.grad = None
            
            # Forward pass - use layer_model for ReverseDiffusion, full model otherwise
            if config['loss_infer'] == 'ReverseDiffusion' and layer_model is not None:
                # Use the extracted layer model for ReverseDiffusion
                # In original code, normalization is handled at transform time, not during forward pass
                output = layer_model(x)
            else:
                # Standard forward pass with full model
                # Simplified to match original code's approach
                output = model(x)
            
            # Calculate loss and gradients based on inference type
            try:
                if config['loss_infer'] == 'ReverseDiffusion':
                    # Use MSE loss to match the noisy features
                    assert config['loss_function'] == 'MSE', "Reverse Diffusion loss function must be MSE"
                    if noisy_features is not None:
                        loss = F.mse_loss(output, noisy_features)
                        grad = torch.autograd.grad(loss, x)[0]  # Removed retain_graph=True to match original
                    else:
                        raise ValueError("Noisy features not computed for ReverseDiffusion")
                
                else:  # Default 'IncreaseConfidence' approach
                    # Get the least confident classes
                    num_classes = min(10, least_confident_classes.size(1))
                    target_classes = least_confident_classes[0, :num_classes]
                    
                    # Create targets for least confident classes
                    targets = torch.tensor([idx.item() for idx in target_classes], device=device)
                    
                    # Use a combined loss to increase confidence
                    loss = 0
                    for target in targets:
                        # Create one-hot target
                        one_hot = torch.zeros_like(output)
                        one_hot[0, target] = 1
                        # Use loss to maximize confidence
                        loss = loss + F.mse_loss(F.softmax(output, dim=1), one_hot)
                    
                    grad = torch.autograd.grad(loss, x, retain_graph=True)[0]
                
                if grad is None:
                    print("Warning: Direct gradient calculation failed")
                    # Fall back to random perturbation
                    random_noise = (torch.rand_like(x) - 0.5) * 2 * config['step_size']
                    x = infer_step.project(x + random_noise)
                else:
                    # Update image with gradient - do this exactly as in original code
                    adjusted_grad = infer_step.step(x, grad)
                    
                    # Add diffusion noise if specified
                    diffusion_noise = config['diffusion_noise_ratio'] * torch.randn_like(x).to(device)
                    
                    # Apply gradient and noise in one operation before projecting, exactly as in original
                    x = infer_step.project(x.clone() + adjusted_grad + diffusion_noise)
                    
            except Exception as e:
                print(f"Error in gradient calculation: {e}")
                # Fall back to random perturbation - match original code
                random_noise = (torch.rand_like(x) - 0.5) * 2 * config['step_size']
                x = infer_step.project(x.clone() + random_noise)
            
            # Store step if in iterations_to_show
            if i+1 in config['iterations_to_show'] or i+1 == config['n_itr']:
                all_steps.append(x[0].detach().cpu())
        
        # Print some info about the inference
        with torch.no_grad():
            if is_sequential and isinstance(model[0], NormalizeByChannelMeanStd):
                if config['inference_normalization']:
                    final_output = model(x)
                else:
                    final_output = core_model(x)
            else:
                if config['inference_normalization']:
                    normalized_x = normalize_transform(x)
                    final_output = model(normalized_x)
                else:
                    final_output = model(x)
                
            final_probs = F.softmax(final_output, dim=1)
            final_conf, final_classes = torch.max(final_probs, 1)
            
            # Calculate timing information
            loop_time = time.time() - loop_start
            total_time = time.time() - inference_start
            avg_iter_time = loop_time / config['n_itr'] if config['n_itr'] > 0 else 0
            
            print(f"Original top class: {classes_orig.item()} ({conf_orig.item():.4f})")
            print(f"Final top class: {final_classes.item()} ({final_conf.item():.4f})")
            print(f"Inference loop completed in {loop_time:.2f} seconds ({avg_iter_time:.4f} sec/iteration)")
            print(f"Total inference time: {total_time:.2f} seconds")
            
        # Return results in format compatible with both old and new code
        return {
            'final_image': x[0].detach().cpu(),
            'steps': all_steps,
            'original_class': classes_orig.item(),
            'original_confidence': conf_orig.item(),
            'final_class': final_classes.item(),
            'final_confidence': final_conf.item()
        }

# Utility function to show inference steps
def show_inference_steps(steps, figsize=(15, 10)):
    import matplotlib.pyplot as plt
    
    n_steps = len(steps)
    fig, axes = plt.subplots(1, n_steps, figsize=figsize)
    
    for i, step_img in enumerate(steps):
        img = step_img.permute(1, 2, 0).numpy()
        axes[i].imshow(img)
        axes[i].set_title(f"Step {i}")
        axes[i].axis('off')
    
    plt.tight_layout()
    return fig