Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,357 Bytes
7449d44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
from torchvision.models.resnet import ResNet50_Weights
from PIL import Image
import numpy as np
import os
import requests
import time
from pathlib import Path
# Check CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Constants
MODEL_URLS = {
'robust_resnet50': 'https://huggingface.co/madrylab/robust-imagenet-models/resolve/main/resnet50_l2_eps_3.0.pt',
'standard_resnet50': 'https://huggingface.co/madrylab/robust-imagenet-models/resolve/main/resnet50_l2_eps_0.0.pt'
}
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
# Default transform
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
normalize_transform = transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)
# Get ImageNet labels
def get_imagenet_labels():
url = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
response = requests.get(url)
if response.status_code == 200:
return response.json()
else:
raise RuntimeError("Failed to fetch ImageNet labels")
# Download model if needed
def download_model(model_type):
if model_type not in MODEL_URLS or MODEL_URLS[model_type] is None:
return None # Use PyTorch's pretrained model
model_path = Path(f"models/{model_type}.pt")
if not model_path.exists():
print(f"Downloading {model_type} model...")
url = MODEL_URLS[model_type]
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(model_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Model downloaded and saved to {model_path}")
else:
raise RuntimeError(f"Failed to download model: {response.status_code}")
return model_path
class NormalizeByChannelMeanStd(nn.Module):
def __init__(self, mean, std):
super(NormalizeByChannelMeanStd, self).__init__()
if not isinstance(mean, torch.Tensor):
mean = torch.tensor(mean)
if not isinstance(std, torch.Tensor):
std = torch.tensor(std)
self.register_buffer("mean", mean)
self.register_buffer("std", std)
def forward(self, tensor):
return self.normalize_fn(tensor, self.mean, self.std)
def normalize_fn(self, tensor, mean, std):
"""Differentiable version of torchvision.functional.normalize"""
# here we assume the color channel is at dim=1
mean = mean[None, :, None, None]
std = std[None, :, None, None]
return tensor.sub(mean).div(std)
class InferStep:
def __init__(self, orig_image, eps, step_size):
self.orig_image = orig_image
self.eps = eps
self.step_size = step_size
def project(self, x):
diff = x - self.orig_image
diff = torch.clamp(diff, -self.eps, self.eps)
return torch.clamp(self.orig_image + diff, 0, 1)
def step(self, x, grad):
l = len(x.shape) - 1
grad_norm = torch.norm(grad.view(grad.shape[0], -1), dim=1).view(-1, *([1]*l))
scaled_grad = grad / (grad_norm + 1e-10)
return scaled_grad * self.step_size
def get_inference_configs(eps=0.5, n_itr=50):
"""Generate inference configuration with customizable parameters."""
config = {
'loss_infer': 'IncreaseConfidence', # How to guide the optimization
'loss_function': 'CE', # Loss function: Cross Entropy
'n_itr': n_itr, # Number of iterations
'eps': eps, # Maximum perturbation size
'step_size': 0.02, # Step size for each iteration
'diffusion_noise_ratio': 0.0, # No diffusion noise
'initial_inference_noise_ratio': 0.0, # No initial noise
'top_layer': 'all', # Use all layers of the model
'inference_normalization': 'on', # Apply normalization during inference
'recognition_normalization': 'on', # Apply normalization during recognition
'iterations_to_show': [1, 5, 10, 20, 30, 40, 50, n_itr] # Specific iterations to visualize
}
return config
class GenerativeInferenceModel:
def __init__(self):
self.models = {}
self.normalizer = NormalizeByChannelMeanStd(IMAGENET_MEAN, IMAGENET_STD).to(device)
self.labels = get_imagenet_labels()
def load_model(self, model_type):
if model_type in self.models:
return self.models[model_type]
model_path = download_model(model_type)
# Create standard ResNet50 model
model = models.resnet50()
# Load the model checkpoint
if model_path:
print(f"Loading {model_type} model from {model_path}...")
checkpoint = torch.load(model_path, map_location=device)
# Handle different checkpoint formats
if 'model' in checkpoint:
# Format from madrylab robust models
state_dict = checkpoint['model']
elif 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
# Direct state dict
state_dict = checkpoint
# Handle prefix in state dict keys
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith('module.'):
new_key = key[7:] # Remove 'module.' prefix
else:
new_key = key
new_state_dict[new_key] = value
model.load_state_dict(new_state_dict)
else:
# Fallback to PyTorch's pretrained model
model = models.resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
model = model.to(device)
model.eval() # Set to evaluation mode
# Store the model for future use
self.models[model_type] = model
return model
def inference(self, image, model_type, config):
# Load model if not already loaded
model = self.load_model(model_type)
# Check if image is a file path
if isinstance(image, str):
if os.path.exists(image):
image = Image.open(image).convert('RGB')
else:
raise ValueError(f"Image path does not exist: {image}")
# Prepare image tensor
image_tensor = transform(image).unsqueeze(0).to(device)
image_tensor.requires_grad = True
# Normalize the image for model input
normalized_tensor = normalize_transform(image_tensor)
# Get original predictions
with torch.no_grad():
output_original = model(normalized_tensor)
probs_orig = F.softmax(output_original, dim=1)
conf_orig, classes_orig = torch.max(probs_orig, 1)
# Get least confident classes
_, least_confident_classes = torch.topk(probs_orig, k=100, largest=False)
# Initialize inference step
infer_step = InferStep(image_tensor, config['eps'], config['step_size'])
# Storage for inference steps
x = image_tensor.clone()
all_steps = [image_tensor[0].detach().cpu()]
# Main inference loop
for i in range(config['n_itr']):
# Reset gradients
x.grad = None
# Normalize input for the model
normalized_x = normalize_transform(x)
# Forward pass
output = model(normalized_x)
# Calculate loss to maximize confidence for least confident classes
target_classes = least_confident_classes[:10] # Use top 10 least confident classes
loss = 0
for idx in target_classes:
target = torch.tensor([idx.item()], device=device)
loss = loss - F.cross_entropy(output, target) # Negative because we want to maximize confidence
# Backward pass
loss.backward()
# Update image
with torch.no_grad():
step = infer_step.step(x, x.grad)
x = x + step
x = infer_step.project(x)
# Store step if in iterations_to_show
if i+1 in config['iterations_to_show'] or i+1 == config['n_itr']:
all_steps.append(x[0].detach().cpu())
# Return final image and all stored steps
return x[0].detach().cpu(), all_steps
# Utility function to show inference steps
def show_inference_steps(steps, figsize=(15, 10)):
import matplotlib.pyplot as plt
n_steps = len(steps)
fig, axes = plt.subplots(1, n_steps, figsize=figsize)
for i, step_img in enumerate(steps):
img = step_img.permute(1, 2, 0).numpy()
axes[i].imshow(img)
axes[i].set_title(f"Step {i}")
axes[i].axis('off')
plt.tight_layout()
return fig |