Spaces:
Sleeping
Sleeping
added more sliders
Browse files
app.py
CHANGED
|
@@ -1,54 +1,62 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
# If running on Hugging Face Spaces, import the GPU decorator
|
| 4 |
-
if "SPACE_ID" in os.environ:
|
| 5 |
-
from spaces.zero.decorator import GPU
|
| 6 |
-
else:
|
| 7 |
-
# Define a dummy GPU decorator when running locally
|
| 8 |
-
def GPU(func):
|
| 9 |
-
return func
|
| 10 |
-
|
| 11 |
-
# Now you can safely import torch and other libraries
|
| 12 |
-
import torch
|
| 13 |
import gradio as gr
|
| 14 |
-
|
| 15 |
import numpy as np
|
| 16 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
import os
|
| 18 |
import argparse
|
| 19 |
from inference import GenerativeInferenceModel, get_inference_configs
|
| 20 |
|
| 21 |
-
# Check if running on Hugging Face Spaces (using 'SPACE_ID' as an example environment variable)
|
| 22 |
-
if "SPACE_ID" in os.environ:
|
| 23 |
-
default_port = int(os.environ.get("PORT", 8860)) # Use provided PORT or fallback to 7860
|
| 24 |
-
else:
|
| 25 |
-
default_port = 7860 # Local default port
|
| 26 |
-
|
| 27 |
# Parse command line arguments
|
| 28 |
parser = argparse.ArgumentParser(description='Run Generative Inference Demo')
|
| 29 |
-
parser.add_argument('--port', type=int, default=
|
| 30 |
args = parser.parse_args()
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
# Create model directories if they don't exist
|
| 36 |
os.makedirs("models", exist_ok=True)
|
| 37 |
os.makedirs("stimuli", exist_ok=True)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# Initialize model
|
| 40 |
model = GenerativeInferenceModel()
|
| 41 |
|
| 42 |
@GPU
|
| 43 |
-
def run_inference(image, model_type,
|
|
|
|
| 44 |
# Convert eps to float
|
| 45 |
eps = float(eps_value)
|
| 46 |
|
| 47 |
-
# Load inference configuration
|
| 48 |
-
config = get_inference_configs(eps=eps, n_itr=int(num_iterations))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
# Run generative inference
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Create animation frames
|
| 54 |
frames = []
|
|
@@ -80,15 +88,39 @@ with gr.Blocks(title="Generative Inference Demo") as demo:
|
|
| 80 |
label="Model"
|
| 81 |
)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
choices=["
|
| 85 |
-
value="
|
| 86 |
-
label="
|
| 87 |
)
|
| 88 |
|
| 89 |
with gr.Row():
|
| 90 |
-
eps_slider = gr.Slider(minimum=0.
|
| 91 |
-
iterations_slider = gr.Slider(minimum=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
run_button = gr.Button("Run Inference")
|
| 94 |
|
|
@@ -97,20 +129,39 @@ with gr.Blocks(title="Generative Inference Demo") as demo:
|
|
| 97 |
output_image = gr.Image(label="Final Inferred Image")
|
| 98 |
output_frames = gr.Gallery(label="Inference Steps", columns=4, rows=2)
|
| 99 |
|
| 100 |
-
# Set up example images
|
| 101 |
examples = [
|
| 102 |
-
|
| 103 |
-
[os.path.join("stimuli", "
|
| 104 |
-
|
| 105 |
-
[os.path.join("stimuli", "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
]
|
| 107 |
|
| 108 |
-
gr.Examples(examples=examples, inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
# Set up event handler
|
| 111 |
run_button.click(
|
| 112 |
fn=run_inference,
|
| 113 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
outputs=[output_image, output_frames]
|
| 115 |
)
|
| 116 |
|
|
@@ -118,20 +169,47 @@ with gr.Blocks(title="Generative Inference Demo") as demo:
|
|
| 118 |
gr.Markdown("""
|
| 119 |
## About Generative Inference
|
| 120 |
|
| 121 |
-
Generative inference is a technique that reveals how neural networks perceive visual stimuli
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
This demo allows you to:
|
| 126 |
-
1. Upload your own images or select from example
|
| 127 |
-
2. Choose between
|
| 128 |
-
3.
|
| 129 |
-
4.
|
|
|
|
|
|
|
| 130 |
""")
|
| 131 |
|
| 132 |
# Launch the demo with specific settings
|
| 133 |
if __name__ == "__main__":
|
| 134 |
print(f"Starting server on port {args.port}")
|
|
|
|
| 135 |
demo.launch(
|
| 136 |
server_name="0.0.0.0", # Listen on all interfaces
|
| 137 |
server_port=args.port, # Use the port from command line arguments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image
|
| 5 |
+
try:
|
| 6 |
+
from spaces import GPU
|
| 7 |
+
except ImportError:
|
| 8 |
+
# Define a no-op decorator if running locally
|
| 9 |
+
def GPU(func):
|
| 10 |
+
return func
|
| 11 |
+
|
| 12 |
import os
|
| 13 |
import argparse
|
| 14 |
from inference import GenerativeInferenceModel, get_inference_configs
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# Parse command line arguments
|
| 17 |
parser = argparse.ArgumentParser(description='Run Generative Inference Demo')
|
| 18 |
+
parser.add_argument('--port', type=int, default=7860, help='Port to run the server on')
|
| 19 |
args = parser.parse_args()
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
# Create model directories if they don't exist
|
| 22 |
os.makedirs("models", exist_ok=True)
|
| 23 |
os.makedirs("stimuli", exist_ok=True)
|
| 24 |
|
| 25 |
+
# Check if running on Hugging Face Spaces (using 'SPACE_ID' as an example environment variable)
|
| 26 |
+
if "SPACE_ID" in os.environ:
|
| 27 |
+
default_port = int(os.environ.get("PORT", 7860)) # Use provided PORT or fallback to 7860
|
| 28 |
+
else:
|
| 29 |
+
default_port = 8861 # Local default port
|
| 30 |
+
|
| 31 |
# Initialize model
|
| 32 |
model = GenerativeInferenceModel()
|
| 33 |
|
| 34 |
@GPU
|
| 35 |
+
def run_inference(image, model_type, inference_type, eps_value, num_iterations,
|
| 36 |
+
step_size, initial_noise=0.05, step_noise=0.01, model_layer="all"):
|
| 37 |
# Convert eps to float
|
| 38 |
eps = float(eps_value)
|
| 39 |
|
| 40 |
+
# Load inference configuration based on the selected type
|
| 41 |
+
config = get_inference_configs(inference_type=inference_type, eps=eps, n_itr=int(num_iterations), step_size=float(step_size))
|
| 42 |
+
|
| 43 |
+
# Handle ReverseDiffusion specific parameters
|
| 44 |
+
if inference_type == "ReverseDiffusion":
|
| 45 |
+
config['initial_inference_noise_ratio'] = float(initial_noise)
|
| 46 |
+
config['diffusion_noise_ratio'] = float(step_noise)
|
| 47 |
+
config['top_layer'] = model_layer
|
| 48 |
|
| 49 |
# Run generative inference
|
| 50 |
+
result = model.inference(image, model_type, config)
|
| 51 |
+
|
| 52 |
+
# Extract results based on return type
|
| 53 |
+
if isinstance(result, tuple):
|
| 54 |
+
# Old format returning (output_image, all_steps)
|
| 55 |
+
output_image, all_steps = result
|
| 56 |
+
else:
|
| 57 |
+
# New format returning dictionary
|
| 58 |
+
output_image = result['final_image']
|
| 59 |
+
all_steps = result['steps']
|
| 60 |
|
| 61 |
# Create animation frames
|
| 62 |
frames = []
|
|
|
|
| 88 |
label="Model"
|
| 89 |
)
|
| 90 |
|
| 91 |
+
inference_type = gr.Dropdown(
|
| 92 |
+
choices=["IncreaseConfidence", "ReverseDiffusion"],
|
| 93 |
+
value="IncreaseConfidence",
|
| 94 |
+
label="Inference Method"
|
| 95 |
)
|
| 96 |
|
| 97 |
with gr.Row():
|
| 98 |
+
eps_slider = gr.Slider(minimum=0.0, maximum=50.0, value=0.5, step=0.1, label="Epsilon (Perturbation Size)")
|
| 99 |
+
iterations_slider = gr.Slider(minimum=1, maximum=500, value=50, step=1, label="Number of Iterations")
|
| 100 |
+
step_size_slider = gr.Slider(minimum=0.0, maximum=10.0, value=1.0, step=0.1, label="Step Size")
|
| 101 |
+
|
| 102 |
+
# Additional parameters for ReverseDiffusion that appear conditionally
|
| 103 |
+
with gr.Row(visible=False) as diffusion_params:
|
| 104 |
+
initial_noise_slider = gr.Slider(minimum=0.0, maximum=0.5, value=0.05, step=0.01,
|
| 105 |
+
label="Initial Noise Ratio")
|
| 106 |
+
step_noise_slider = gr.Slider(minimum=0.0, maximum=0.2, value=0.01, step=0.01,
|
| 107 |
+
label="Per-Step Noise Ratio")
|
| 108 |
+
|
| 109 |
+
with gr.Row(visible=False) as layer_params:
|
| 110 |
+
layer_choice = gr.Dropdown(
|
| 111 |
+
choices=["all", "conv1", "bn1", "relu", "maxpool", "layer1", "layer2", "layer3", "layer4", "avgpool"],
|
| 112 |
+
value="all",
|
| 113 |
+
label="Model Layer"
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Show/hide parameters based on inference type
|
| 117 |
+
def toggle_params(inference):
|
| 118 |
+
if inference == "ReverseDiffusion":
|
| 119 |
+
return gr.update(visible=True), gr.update(visible=True)
|
| 120 |
+
else:
|
| 121 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 122 |
+
|
| 123 |
+
inference_type.change(toggle_params, [inference_type], [diffusion_params, layer_params])
|
| 124 |
|
| 125 |
run_button = gr.Button("Run Inference")
|
| 126 |
|
|
|
|
| 129 |
output_image = gr.Image(label="Final Inferred Image")
|
| 130 |
output_frames = gr.Gallery(label="Inference Steps", columns=4, rows=2)
|
| 131 |
|
| 132 |
+
# Set up example images with default parameters for all inputs
|
| 133 |
examples = [
|
| 134 |
+
# IncreaseConfidence examples
|
| 135 |
+
[os.path.join("stimuli", "Kanizsa_square.jpg"), "robust_resnet50", "IncreaseConfidence",
|
| 136 |
+
0.5, 50, 1.0, 0.05, 0.01, "all"],
|
| 137 |
+
[os.path.join("stimuli", "face_vase.png"), "robust_resnet50", "IncreaseConfidence",
|
| 138 |
+
0.5, 50, 1.0, 0.05, 0.01, "all"],
|
| 139 |
+
[os.path.join("stimuli", "figure_ground.png"), "robust_resnet50", "IncreaseConfidence",
|
| 140 |
+
0.7, 100, 1.0, 0.05, 0.01, "all"],
|
| 141 |
+
|
| 142 |
+
# ReverseDiffusion examples with different layers and noise values
|
| 143 |
+
[os.path.join("stimuli", "Neon_Color_Circle.jpg"), "robust_resnet50", "ReverseDiffusion",
|
| 144 |
+
0.3, 80, 0.8, 0.05, 0.01, "all"],
|
| 145 |
+
[os.path.join("stimuli", "Kanizsa_square.jpg"), "robust_resnet50", "ReverseDiffusion",
|
| 146 |
+
0.5, 50, 0.8, 0.1, 0.02, "layer4"], # Using layer4 (high-level features)
|
| 147 |
+
[os.path.join("stimuli", "face_vase.png"), "robust_resnet50", "ReverseDiffusion",
|
| 148 |
+
0.4, 60, 0.8, 0.15, 0.03, "layer1"] # Using layer1 (lower-level features)
|
| 149 |
]
|
| 150 |
|
| 151 |
+
gr.Examples(examples=examples, inputs=[
|
| 152 |
+
image_input, model_choice, inference_type,
|
| 153 |
+
eps_slider, iterations_slider, step_size_slider,
|
| 154 |
+
initial_noise_slider, step_noise_slider, layer_choice
|
| 155 |
+
])
|
| 156 |
|
| 157 |
# Set up event handler
|
| 158 |
run_button.click(
|
| 159 |
fn=run_inference,
|
| 160 |
+
inputs=[
|
| 161 |
+
image_input, model_choice, inference_type,
|
| 162 |
+
eps_slider, iterations_slider, step_size_slider,
|
| 163 |
+
initial_noise_slider, step_noise_slider, layer_choice
|
| 164 |
+
],
|
| 165 |
outputs=[output_image, output_frames]
|
| 166 |
)
|
| 167 |
|
|
|
|
| 169 |
gr.Markdown("""
|
| 170 |
## About Generative Inference
|
| 171 |
|
| 172 |
+
Generative inference is a technique that reveals how neural networks perceive visual stimuli. This demo offers two methods:
|
| 173 |
+
|
| 174 |
+
### 1. IncreaseConfidence
|
| 175 |
+
Optimizes the input to increase the network's confidence in its least confident predictions. This reveals how the
|
| 176 |
+
network perceives contours, figure-ground separation, and other visual phenomena similar to human perception.
|
| 177 |
+
|
| 178 |
+
### 2. ReverseDiffusion
|
| 179 |
+
Starts with a noisy version of the image and guides the optimization to match features of the noisy image.
|
| 180 |
+
This approach can reveal different aspects of visual processing and is inspired by diffusion models.
|
| 181 |
+
|
| 182 |
+
When using ReverseDiffusion, additional parameters become available:
|
| 183 |
+
- **Initial Noise Ratio**: Controls the amount of noise added to the image at the beginning
|
| 184 |
+
- **Per-Step Noise Ratio**: Controls the amount of noise added at each optimization step
|
| 185 |
+
- **Model Layer**: Select a specific layer of the ResNet50 model to extract features from:
|
| 186 |
+
- `all`: Use the full model (default)
|
| 187 |
+
- `conv1`: First convolutional layer
|
| 188 |
+
- `bn1`: First batch normalization layer
|
| 189 |
+
- `relu`: First ReLU activation
|
| 190 |
+
- `maxpool`: Max pooling layer
|
| 191 |
+
- `layer1`: First residual block
|
| 192 |
+
- `layer2`: Second residual block
|
| 193 |
+
- `layer3`: Third residual block
|
| 194 |
+
- `layer4`: Fourth residual block
|
| 195 |
+
- `avgpool`: Average pooling layer
|
| 196 |
+
|
| 197 |
+
Different layers capture different levels of abstraction - earlier layers represent low-level features
|
| 198 |
+
like edges and textures, while later layers represent higher-level features and object parts.
|
| 199 |
|
| 200 |
This demo allows you to:
|
| 201 |
+
1. Upload your own images or select from example images
|
| 202 |
+
2. Choose between inference methods (IncreaseConfidence or ReverseDiffusion)
|
| 203 |
+
3. Select between robust or standard ResNet50 models
|
| 204 |
+
4. Adjust parameters like perturbation size (epsilon) and number of iterations
|
| 205 |
+
5. For ReverseDiffusion, fine-tune noise levels and select specific model layers
|
| 206 |
+
6. Visualize how the perception emerges over time
|
| 207 |
""")
|
| 208 |
|
| 209 |
# Launch the demo with specific settings
|
| 210 |
if __name__ == "__main__":
|
| 211 |
print(f"Starting server on port {args.port}")
|
| 212 |
+
# Simplified launch parameters
|
| 213 |
demo.launch(
|
| 214 |
server_name="0.0.0.0", # Listen on all interfaces
|
| 215 |
server_port=args.port, # Use the port from command line arguments
|