initiate commit
Browse files
app.py
CHANGED
|
@@ -1,285 +1,50 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 4 |
import time
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 11 |
-
|
| 12 |
-
# Original model
|
| 13 |
-
original_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
-
|
| 16 |
-
# Quantized model
|
| 17 |
-
quantized_model = torch.quantization.quantize_dynamic(
|
| 18 |
-
original_model,
|
| 19 |
-
{torch.nn.Linear},
|
| 20 |
-
dtype=torch.qint8
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
return original_model, quantized_model, tokenizer
|
| 24 |
-
|
| 25 |
-
original_model, quantized_model, tokenizer = load_models()
|
| 26 |
|
| 27 |
-
def
|
| 28 |
-
"""
|
| 29 |
-
Predict sentiment using original or quantized model
|
| 30 |
-
|
| 31 |
-
Args:
|
| 32 |
-
text: Input text to analyze
|
| 33 |
-
use_quantized: Use quantized model if True, original if False
|
| 34 |
-
|
| 35 |
-
Returns:
|
| 36 |
-
tuple: (label, confidence, inference_time, model_info)
|
| 37 |
-
"""
|
| 38 |
-
model = quantized_model if use_quantized else original_model
|
| 39 |
-
|
| 40 |
-
# Tokenize
|
| 41 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
inference_time = (time.time() - start_time) * 1000 # ms
|
| 50 |
-
|
| 51 |
-
# Get prediction
|
| 52 |
-
probs = torch.softmax(outputs.logits, dim=-1)
|
| 53 |
-
confidence, predicted = torch.max(probs, dim=-1)
|
| 54 |
-
|
| 55 |
-
label = "😊 POSITIVE" if predicted.item() == 1 else "😞 NEGATIVE"
|
| 56 |
-
confidence_pct = confidence.item() * 100
|
| 57 |
-
|
| 58 |
-
# Model info
|
| 59 |
-
model_type = "Quantized INT8" if use_quantized else "Original FP32"
|
| 60 |
-
model_size = "~68 MB" if use_quantized else "~255 MB"
|
| 61 |
-
|
| 62 |
-
model_info = f"**Model:** {model_type}\n**Size:** {model_size}\n**Inference Time:** {inference_time:.2f} ms"
|
| 63 |
-
|
| 64 |
-
return label, f"{confidence_pct:.1f}%", model_info
|
| 65 |
-
|
| 66 |
-
def compare_models(text):
|
| 67 |
-
"""Compare original and quantized model predictions"""
|
| 68 |
-
|
| 69 |
-
# Original model
|
| 70 |
-
orig_label, orig_conf, orig_info = predict_sentiment(text, use_quantized=False)
|
| 71 |
-
|
| 72 |
-
# Quantized model
|
| 73 |
-
quant_label, quant_conf, quant_info = predict_sentiment(text, use_quantized=True)
|
| 74 |
-
|
| 75 |
-
# Create comparison
|
| 76 |
-
comparison = f"""
|
| 77 |
-
## 🔍 Comparison Results
|
| 78 |
-
|
| 79 |
-
### Original Model (FP32)
|
| 80 |
-
- **Prediction:** {orig_label}
|
| 81 |
-
- **Confidence:** {orig_conf}
|
| 82 |
-
- {orig_info}
|
| 83 |
-
|
| 84 |
-
### Quantized Model (INT8)
|
| 85 |
-
- **Prediction:** {quant_label}
|
| 86 |
-
- **Confidence:** {quant_conf}
|
| 87 |
-
- {quant_info}
|
| 88 |
-
|
| 89 |
-
### Summary
|
| 90 |
-
- **Size Reduction:** 3.75x smaller (255 MB → 68 MB)
|
| 91 |
-
- **Predictions Match:** {'✅ Yes' if orig_label == quant_label else '⚠️ Different'}
|
| 92 |
-
- **Speed:** ~2x faster on CPU
|
| 93 |
-
"""
|
| 94 |
-
|
| 95 |
-
return comparison
|
| 96 |
-
|
| 97 |
-
# Example texts
|
| 98 |
-
examples = [
|
| 99 |
-
["This movie is absolutely fantastic! Best film I've seen this year!"],
|
| 100 |
-
["Terrible waste of time and money. Very disappointed."],
|
| 101 |
-
["It was okay, nothing special but not bad either."],
|
| 102 |
-
["Amazing product! Exceeded all my expectations!"],
|
| 103 |
-
["Poor quality, not worth the price at all."],
|
| 104 |
-
]
|
| 105 |
-
|
| 106 |
-
# Create Gradio interface
|
| 107 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Transformer Edge Optimization Demo") as demo:
|
| 108 |
-
|
| 109 |
-
gr.Markdown("""
|
| 110 |
-
# 🚀 Transformer Edge Optimization Demo
|
| 111 |
-
|
| 112 |
-
Compare **Original FP32** vs **Quantized INT8** models for sentiment analysis.
|
| 113 |
-
|
| 114 |
-
**Key Benefits:**
|
| 115 |
-
- ✅ **4x smaller** model size (255 MB → 68 MB)
|
| 116 |
-
- ✅ **2x faster** inference on CPU
|
| 117 |
-
- ✅ **Minimal accuracy loss** (~1-2%)
|
| 118 |
-
|
| 119 |
-
---
|
| 120 |
-
""")
|
| 121 |
-
|
| 122 |
-
with gr.Tab("🎯 Quick Prediction"):
|
| 123 |
-
with gr.Row():
|
| 124 |
-
with gr.Column():
|
| 125 |
-
text_input = gr.Textbox(
|
| 126 |
-
label="Enter text to analyze",
|
| 127 |
-
placeholder="Type your text here...",
|
| 128 |
-
lines=3
|
| 129 |
-
)
|
| 130 |
-
use_quant = gr.Checkbox(
|
| 131 |
-
label="Use Quantized Model (INT8)",
|
| 132 |
-
value=True,
|
| 133 |
-
info="Uncheck to use Original FP32 model"
|
| 134 |
-
)
|
| 135 |
-
predict_btn = gr.Button("🔮 Predict Sentiment", variant="primary")
|
| 136 |
-
|
| 137 |
-
with gr.Column():
|
| 138 |
-
label_output = gr.Textbox(label="Prediction", interactive=False)
|
| 139 |
-
confidence_output = gr.Textbox(label="Confidence", interactive=False)
|
| 140 |
-
info_output = gr.Markdown(label="Model Info")
|
| 141 |
-
|
| 142 |
-
predict_btn.click(
|
| 143 |
-
fn=predict_sentiment,
|
| 144 |
-
inputs=[text_input, use_quant],
|
| 145 |
-
outputs=[label_output, confidence_output, info_output]
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
gr.Examples(
|
| 149 |
-
examples=examples,
|
| 150 |
-
inputs=text_input,
|
| 151 |
-
label="Try these examples:"
|
| 152 |
)
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
label="Try these examples:"
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
with gr.Tab("📚 Documentation"):
|
| 180 |
-
gr.Markdown("""
|
| 181 |
-
## 🎯 What is Quantization?
|
| 182 |
-
|
| 183 |
-
**Quantization** reduces model size by converting weights from 32-bit floating point (FP32) to 8-bit integers (INT8).
|
| 184 |
-
|
| 185 |
-
### Benefits:
|
| 186 |
-
- **4x smaller** model size
|
| 187 |
-
- **2-3x faster** inference
|
| 188 |
-
- **Minimal accuracy loss** (~1-2%)
|
| 189 |
-
- **Better for mobile/edge** devices
|
| 190 |
-
|
| 191 |
-
### Techniques Used:
|
| 192 |
-
1. **Dynamic Quantization** - Weights quantized, activations computed at runtime
|
| 193 |
-
2. **Post-Training Quantization** - No retraining needed
|
| 194 |
-
3. **PyTorch Native** - Built-in PyTorch support
|
| 195 |
-
|
| 196 |
-
---
|
| 197 |
-
|
| 198 |
-
## 📊 Benchmark Results
|
| 199 |
-
|
| 200 |
-
| Metric | Original (FP32) | Quantized (INT8) | Improvement |
|
| 201 |
-
|--------|----------------|------------------|-------------|
|
| 202 |
-
| **Model Size** | 255 MB | 68 MB | **3.75x smaller** |
|
| 203 |
-
| **Inference Time** | 12.3 ms | 5.8 ms | **2.1x faster** |
|
| 204 |
-
| **Accuracy (SST-2)** | 91.8% | 90.2% | -1.6% |
|
| 205 |
-
| **Memory Usage** | 280 MB | 95 MB | **2.9x less** |
|
| 206 |
-
|
| 207 |
-
---
|
| 208 |
-
|
| 209 |
-
## 🚀 Try it Yourself!
|
| 210 |
-
|
| 211 |
-
### Google Colab Notebooks:
|
| 212 |
-
|
| 213 |
-
1. **Quantization Basics** (15 min)
|
| 214 |
-
[](https://colab.research.google.com/github/mtkaya/transformer-edge-optimization/blob/main/notebooks/01_quantization_basics.ipynb)
|
| 215 |
-
|
| 216 |
-
2. **ONNX Runtime** (20 min)
|
| 217 |
-
[](https://colab.research.google.com/github/mtkaya/transformer-edge-optimization/blob/main/notebooks/02_huggingface_optimum.ipynb)
|
| 218 |
-
|
| 219 |
-
3. **Knowledge Distillation** (30 min)
|
| 220 |
-
[](https://colab.research.google.com/github/mtkaya/transformer-edge-optimization/blob/main/notebooks/05_distilbert_training.ipynb)
|
| 221 |
-
|
| 222 |
-
---
|
| 223 |
-
|
| 224 |
-
## 💻 Quick Start Code
|
| 225 |
-
|
| 226 |
-
```python
|
| 227 |
-
import torch
|
| 228 |
-
from transformers import AutoModelForSequenceClassification
|
| 229 |
-
|
| 230 |
-
# Load model
|
| 231 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 232 |
-
"distilbert-base-uncased-finetuned-sst-2-english"
|
| 233 |
-
)
|
| 234 |
-
|
| 235 |
-
# Quantize (FP32 → INT8)
|
| 236 |
-
quantized_model = torch.quantization.quantize_dynamic(
|
| 237 |
-
model, {torch.nn.Linear}, dtype=torch.qint8
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
# Model is now 4x smaller! 🎉
|
| 241 |
-
```
|
| 242 |
-
|
| 243 |
-
---
|
| 244 |
-
|
| 245 |
-
## 🔗 Resources
|
| 246 |
-
|
| 247 |
-
- **GitHub Repository:** [mtkaya/transformer-edge-optimization](https://github.com/mtkaya/transformer-edge-optimization)
|
| 248 |
-
- **Documentation:** [Full Guide](https://github.com/mtkaya/transformer-edge-optimization#readme)
|
| 249 |
-
- **Hugging Face:** [Model Card](https://huggingface.co/spaces/mtkaya/transformer-edge-optimization)
|
| 250 |
-
|
| 251 |
-
---
|
| 252 |
-
|
| 253 |
-
## 📧 Contact
|
| 254 |
-
|
| 255 |
-
- **Issues:** [Report a bug](https://github.com/mtkaya/transformer-edge-optimization/issues)
|
| 256 |
-
- **Discussions:** [Ask questions](https://github.com/mtkaya/transformer-edge-optimization/discussions)
|
| 257 |
-
|
| 258 |
-
---
|
| 259 |
-
|
| 260 |
-
<div align="center">
|
| 261 |
-
|
| 262 |
-
**Made with ❤️ for the AI community**
|
| 263 |
-
|
| 264 |
-
⭐ Star on [GitHub](https://github.com/mtkaya/transformer-edge-optimization) if you find this useful!
|
| 265 |
-
|
| 266 |
-
</div>
|
| 267 |
-
""")
|
| 268 |
-
|
| 269 |
-
gr.Markdown("""
|
| 270 |
-
---
|
| 271 |
-
|
| 272 |
-
<div align="center">
|
| 273 |
-
|
| 274 |
-
**🚀 Transformer Edge Optimization Toolkit**
|
| 275 |
-
|
| 276 |
-
[GitHub](https://github.com/mtkaya/transformer-edge-optimization) •
|
| 277 |
-
[Documentation](https://github.com/mtkaya/transformer-edge-optimization#readme) •
|
| 278 |
-
[Notebooks](https://github.com/mtkaya/transformer-edge-optimization/tree/main/notebooks)
|
| 279 |
-
|
| 280 |
-
</div>
|
| 281 |
-
""")
|
| 282 |
|
| 283 |
-
# Launch
|
| 284 |
if __name__ == "__main__":
|
| 285 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import time
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
import torch
|
| 5 |
+
import bitsandbytes as bnb # Quantization için
|
| 6 |
|
| 7 |
+
# Model yükle
|
| 8 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def classify_with_quantization(text, use_quantization=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 14 |
|
| 15 |
+
if use_quantization:
|
| 16 |
+
# 8-bit quantization uygula
|
| 17 |
+
model_quantized = AutoModelForSequenceClassification.from_pretrained(
|
| 18 |
+
model_name,
|
| 19 |
+
load_in_8bit=True,
|
| 20 |
+
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
+
model_to_use = model_quantized
|
| 23 |
+
else:
|
| 24 |
+
model_to_use = model
|
| 25 |
|
| 26 |
+
start_time = time.time()
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
outputs = model_to_use(**inputs)
|
| 29 |
+
inference_time = time.time() - start_time
|
| 30 |
+
|
| 31 |
+
logits = outputs.logits
|
| 32 |
+
predicted_class = logits.argmax().item()
|
| 33 |
+
label = "POSITIVE" if predicted_class == 1 else "NEGATIVE"
|
| 34 |
+
|
| 35 |
+
return f"Label: {label}\nInference Time: {inference_time:.4f}s"
|
| 36 |
+
|
| 37 |
+
# Gradio interface
|
| 38 |
+
demo = gr.Interface(
|
| 39 |
+
fn=classify_with_quantization,
|
| 40 |
+
inputs=[
|
| 41 |
+
gr.Textbox(lines=2, placeholder="Enter text for sentiment analysis..."),
|
| 42 |
+
gr.Checkbox(label="Use 8-bit Quantization", value=False)
|
| 43 |
+
],
|
| 44 |
+
outputs=gr.Textbox(),
|
| 45 |
+
title="Transformer Model Optimization Demo",
|
| 46 |
+
description="Test quantization on DistilBERT for faster edge inference. Toggle quantization to see speed gains."
|
| 47 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
| 49 |
if __name__ == "__main__":
|
| 50 |
+
demo.launch()
|