Update app.py
Browse filesBack to version before ChatGPT
app.py
CHANGED
|
@@ -1,125 +1,19 @@
|
|
| 1 |
-
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from datetime import datetime
|
| 5 |
-
|
| 6 |
from transformers import pipeline
|
| 7 |
from huggingface_hub import InferenceClient, login, snapshot_download
|
| 8 |
-
|
| 9 |
from langchain_community.vectorstores import FAISS, DistanceStrategy
|
| 10 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
|
| 13 |
from smolagents import Tool, HfApiModel, ToolCallingAgent
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
-
# -------- Helpers & Compatibility --------
|
| 17 |
-
|
| 18 |
-
def _warn_token():
|
| 19 |
-
hf_token = os.getenv("TOKEN") or os.getenv("HF_TOKEN")
|
| 20 |
-
if not hf_token:
|
| 21 |
-
print("[WARN] No HF token found in env (TOKEN or HF_TOKEN). Private models/endpoints may fail.")
|
| 22 |
-
return None
|
| 23 |
-
return hf_token
|
| 24 |
-
|
| 25 |
-
def _login_hf():
|
| 26 |
-
token = _warn_token()
|
| 27 |
-
if token:
|
| 28 |
-
try:
|
| 29 |
-
login(token=token)
|
| 30 |
-
except TypeError:
|
| 31 |
-
# older huggingface_hub accepted positional
|
| 32 |
-
login(token)
|
| 33 |
-
|
| 34 |
-
def _stream_chat(client: InferenceClient, messages, max_tokens: int, temperature: float, top_p: float):
|
| 35 |
-
"""
|
| 36 |
-
Try new OpenAI-style streaming first, then older `chat_completion`, then fall back to text_generation.
|
| 37 |
-
Yields string chunks.
|
| 38 |
-
"""
|
| 39 |
-
# 1) New: client.chat.completions.create(..., stream=True)
|
| 40 |
-
try:
|
| 41 |
-
chat = client.chat.completions.create(
|
| 42 |
-
messages=messages,
|
| 43 |
-
max_tokens=max_tokens,
|
| 44 |
-
temperature=temperature,
|
| 45 |
-
top_p=top_p,
|
| 46 |
-
stream=True,
|
| 47 |
-
)
|
| 48 |
-
for chunk in chat:
|
| 49 |
-
# choices[0].delta.content may be None in some chunks
|
| 50 |
-
if chunk and getattr(chunk, "choices", None):
|
| 51 |
-
delta = chunk.choices[0].delta
|
| 52 |
-
if delta and getattr(delta, "content", None):
|
| 53 |
-
yield delta.content
|
| 54 |
-
return
|
| 55 |
-
except Exception as e_new:
|
| 56 |
-
# print for debug, but continue to fallback
|
| 57 |
-
print("[INFO] OpenAI-style chat.completions streaming not available:", repr(e_new))
|
| 58 |
-
|
| 59 |
-
# 2) Old: client.chat_completion(..., stream=True)
|
| 60 |
-
try:
|
| 61 |
-
old_stream = client.chat_completion(
|
| 62 |
-
messages=messages,
|
| 63 |
-
max_tokens=max_tokens,
|
| 64 |
-
temperature=temperature,
|
| 65 |
-
top_p=top_p,
|
| 66 |
-
stream=True,
|
| 67 |
-
)
|
| 68 |
-
# Old stream objects sometimes have .choices[0].delta.content, sometimes just .token
|
| 69 |
-
for chunk in old_stream:
|
| 70 |
-
text = None
|
| 71 |
-
try:
|
| 72 |
-
text = chunk.choices[0].delta.content # may exist
|
| 73 |
-
except Exception:
|
| 74 |
-
pass
|
| 75 |
-
if not text:
|
| 76 |
-
# try common fallbacks
|
| 77 |
-
text = getattr(chunk, "token", None) or getattr(chunk, "text", None)
|
| 78 |
-
if text:
|
| 79 |
-
yield text
|
| 80 |
-
return
|
| 81 |
-
except Exception as e_old:
|
| 82 |
-
print("[INFO] Legacy chat_completion streaming not available:", repr(e_old))
|
| 83 |
-
|
| 84 |
-
# 3) Fallback: plain text_generation with a single concatenated prompt (no messages)
|
| 85 |
-
# The last user message should be the final prompt.
|
| 86 |
-
try:
|
| 87 |
-
final_prompt = ""
|
| 88 |
-
for m in messages:
|
| 89 |
-
role = m.get("role", "user")
|
| 90 |
-
content = m.get("content", "")
|
| 91 |
-
# simple role-tagged concat
|
| 92 |
-
final_prompt += f"{role.upper()}: {content}\n"
|
| 93 |
-
gen_stream = client.text_generation(
|
| 94 |
-
final_prompt,
|
| 95 |
-
max_new_tokens=max_tokens,
|
| 96 |
-
temperature=temperature,
|
| 97 |
-
top_p=top_p,
|
| 98 |
-
stream=True,
|
| 99 |
-
return_full_text=False,
|
| 100 |
-
)
|
| 101 |
-
for piece in gen_stream:
|
| 102 |
-
# piece may be string or an object with .token/.generated_text
|
| 103 |
-
if isinstance(piece, str):
|
| 104 |
-
yield piece
|
| 105 |
-
else:
|
| 106 |
-
text = getattr(piece, "token", None) or getattr(piece, "generated_text", None)
|
| 107 |
-
if text:
|
| 108 |
-
yield text
|
| 109 |
-
return
|
| 110 |
-
except Exception as e_gen:
|
| 111 |
-
print("[ERROR] All HF streaming methods failed:", repr(e_gen))
|
| 112 |
-
yield "\n[Error] Unable to stream from the inference endpoint. Check model name, token, and HF API version.\n"
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
# -------- Data / Vector Store --------
|
| 116 |
-
|
| 117 |
class RetrieverTool(Tool):
|
| 118 |
name = "retriever"
|
| 119 |
-
description =
|
| 120 |
-
"Using semantic similarity in German, French, English and Italian, retrieves some documents "
|
| 121 |
-
"from the knowledge base that have the closest embeddings to the input query."
|
| 122 |
-
)
|
| 123 |
inputs = {
|
| 124 |
"query": {
|
| 125 |
"type": "string",
|
|
@@ -128,169 +22,141 @@ class RetrieverTool(Tool):
|
|
| 128 |
}
|
| 129 |
output_type = "string"
|
| 130 |
|
| 131 |
-
def __init__(self, vectordb: VectorStore,
|
| 132 |
super().__init__(**kwargs)
|
| 133 |
self.vectordb = vectordb
|
| 134 |
-
self.df = df
|
| 135 |
|
| 136 |
def forward(self, query: str) -> str:
|
| 137 |
assert isinstance(query, str), "Your search query must be a string"
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
| 142 |
|
| 143 |
spacer = " \n"
|
| 144 |
context = ""
|
| 145 |
nb_char = 100
|
| 146 |
-
|
| 147 |
for doc in docs:
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
# Try to find a surrounding extract from the master text
|
| 156 |
-
case_text_summary = ""
|
| 157 |
-
if case_url:
|
| 158 |
-
try:
|
| 159 |
-
rows = self.df[self.df["case_url"] == case_url]
|
| 160 |
-
if not rows.empty:
|
| 161 |
-
case_text = str(rows.iloc[0]["case_text"])
|
| 162 |
-
idx = case_text.find(doc.page_content)
|
| 163 |
-
if idx >= 0:
|
| 164 |
-
start = max(0, idx - nb_char)
|
| 165 |
-
end = min(len(case_text), idx + len(doc.page_content) + nb_char)
|
| 166 |
-
case_text_summary = case_text[start:end]
|
| 167 |
-
except Exception as e:
|
| 168 |
-
# If anything goes wrong, fall back to page_content
|
| 169 |
-
case_text_summary = doc.page_content
|
| 170 |
-
|
| 171 |
-
if not case_text_summary:
|
| 172 |
-
case_text_summary = doc.page_content
|
| 173 |
-
|
| 174 |
context += "#######" + spacer
|
| 175 |
-
context += "# Case number: " +
|
| 176 |
-
|
| 177 |
-
context += "# Case
|
| 178 |
-
context += "# Case
|
| 179 |
-
context += "# Case
|
| 180 |
context += "# Case extract: " + case_text_summary + spacer
|
| 181 |
|
| 182 |
-
return "\nRetrieved documents:\n" + context
|
| 183 |
|
|
|
|
| 184 |
|
| 185 |
-
# -------- Init HF / Model / Index --------
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
# MODEL_ID = "swiss-ai/Apertus-8B-Instruct-2509"
|
| 192 |
|
| 193 |
-
client = InferenceClient(
|
| 194 |
|
| 195 |
-
# Pull the FAISS dataset snapshot and derive the index path
|
| 196 |
folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())
|
| 197 |
-
index_dir = os.path.join(folder, "faiss_index_mpnet_cos")
|
| 198 |
-
if not os.path.isdir(index_dir):
|
| 199 |
-
# Fallback: try current working directory if you’ve manually placed the index there
|
| 200 |
-
alt = os.path.join(os.getcwd(), "faiss_index_mpnet_cos")
|
| 201 |
-
if os.path.isdir(alt):
|
| 202 |
-
index_dir = alt
|
| 203 |
-
else:
|
| 204 |
-
print(f"[WARN] Could not find FAISS index directory at {index_dir} or {alt}. Check your dataset contents.")
|
| 205 |
|
| 206 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
| 207 |
|
| 208 |
-
|
| 209 |
-
vector_db = FAISS.load_local(
|
| 210 |
-
index_dir,
|
| 211 |
-
embeddings,
|
| 212 |
-
allow_dangerous_deserialization=True,
|
| 213 |
-
distance_strategy=DistanceStrategy.COSINE,
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
# Load your case dataframe
|
| 217 |
-
CSV_PATH = os.path.join(folder, "bger_cedh_db 1954-2024.csv")
|
| 218 |
-
if not os.path.isfile(CSV_PATH):
|
| 219 |
-
# also try local if you keep it next to the script
|
| 220 |
-
CSV_PATH = "bger_cedh_db 1954-2024.csv"
|
| 221 |
-
df = pd.read_csv(CSV_PATH)
|
| 222 |
|
| 223 |
-
|
| 224 |
-
agent = ToolCallingAgent(tools=[retriever_tool], model=HfApiModel(MODEL_ID)) # Not used directly, but kept if you expand.
|
| 225 |
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
|
| 229 |
-
def respond(
|
| 230 |
-
user_message: str,
|
| 231 |
-
history: list[tuple[str, str]],
|
| 232 |
-
system_message: str,
|
| 233 |
-
max_tokens: int,
|
| 234 |
-
temperature: float,
|
| 235 |
-
top_p: float,
|
| 236 |
-
score_threshold: float,
|
| 237 |
-
):
|
| 238 |
print(datetime.now())
|
| 239 |
-
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
-
|
| 244 |
-
|
|
|
|
|
|
|
| 245 |
Respond only to the question asked, response should be relevant to the question and in the same language as the question.
|
| 246 |
Provide the number of the source document when relevant, as well as the link to the document.
|
| 247 |
If you cannot find information, do not give up and try calling your retriever again with different arguments!
|
| 248 |
Always give url of the sources at the end and only answer in the language the question is asked.
|
| 249 |
-
|
| 250 |
Question:
|
| 251 |
-
{
|
| 252 |
-
|
| 253 |
{context}
|
| 254 |
"""
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
| 256 |
messages = [{"role": "system", "content": system_message}]
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
messages.append({"role": "assistant", "content": a})
|
| 264 |
|
| 265 |
messages.append({"role": "user", "content": prompt})
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
| 271 |
max_tokens=max_tokens,
|
|
|
|
| 272 |
temperature=temperature,
|
| 273 |
top_p=top_p,
|
| 274 |
):
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
| 278 |
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
|
|
|
| 282 |
demo = gr.ChatInterface(
|
| 283 |
respond,
|
| 284 |
additional_inputs=[
|
| 285 |
-
gr.Textbox(value="You are assisting a jurist or a
|
| 286 |
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
|
| 287 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
|
| 288 |
-
gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
gr.Slider(minimum=0, maximum=1, value=0.75, step=0.05, label="Score Threshold"),
|
| 290 |
],
|
| 291 |
description="# 📜 ALexI: Artificial Legal Intelligence for Swiss Jurisprudence",
|
| 292 |
)
|
| 293 |
|
|
|
|
| 294 |
if __name__ == "__main__":
|
| 295 |
print("Ready!")
|
| 296 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from huggingface_hub import InferenceClient, login, snapshot_download
|
|
|
|
| 4 |
from langchain_community.vectorstores import FAISS, DistanceStrategy
|
| 5 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 6 |
+
import os
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from datetime import datetime
|
| 9 |
|
| 10 |
from smolagents import Tool, HfApiModel, ToolCallingAgent
|
| 11 |
+
from langchain_core.vectorstores import VectorStore
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
class RetrieverTool(Tool):
|
| 15 |
name = "retriever"
|
| 16 |
+
description = "Using semantic similarity in German, French, English and Italian, retrieves some documents from the knowledge base that have the closest embeddings to the input query."
|
|
|
|
|
|
|
|
|
|
| 17 |
inputs = {
|
| 18 |
"query": {
|
| 19 |
"type": "string",
|
|
|
|
| 22 |
}
|
| 23 |
output_type = "string"
|
| 24 |
|
| 25 |
+
def __init__(self, vectordb: VectorStore, **kwargs):
|
| 26 |
super().__init__(**kwargs)
|
| 27 |
self.vectordb = vectordb
|
|
|
|
| 28 |
|
| 29 |
def forward(self, query: str) -> str:
|
| 30 |
assert isinstance(query, str), "Your search query must be a string"
|
| 31 |
+
|
| 32 |
+
docs = self.vectordb.similarity_search(
|
| 33 |
+
query,
|
| 34 |
+
k=7,
|
| 35 |
+
)
|
| 36 |
|
| 37 |
spacer = " \n"
|
| 38 |
context = ""
|
| 39 |
nb_char = 100
|
| 40 |
+
|
| 41 |
for doc in docs:
|
| 42 |
+
case_text = df[df["case_url"] == doc.metadata["case_url"]].case_text.values[0]
|
| 43 |
+
index = case_text.find(doc.page_content)
|
| 44 |
+
start = max(0, index - nb_char)
|
| 45 |
+
end = min(len(case_text), index + len(doc.page_content) + nb_char)
|
| 46 |
+
case_text_summary = case_text[start:end]
|
| 47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
context += "#######" + spacer
|
| 49 |
+
context += "# Case number: " + doc.metadata["case_ref"] + " " + doc.metadata["case_nb"] + spacer
|
| 50 |
+
context += "# Case source: " + ("Swiss Federal Court" if doc.metadata["case_ref"] == "ATF" else "European Court of Human Rights") + spacer
|
| 51 |
+
context += "# Case date: " + doc.metadata["case_date"] + spacer
|
| 52 |
+
context += "# Case url: " + doc.metadata["case_url"] + spacer
|
| 53 |
+
#context += "# Case text: " + doc.page_content + spacer
|
| 54 |
context += "# Case extract: " + case_text_summary + spacer
|
| 55 |
|
|
|
|
| 56 |
|
| 57 |
+
return "\nRetrieved documents:\n" + context
|
| 58 |
|
|
|
|
| 59 |
|
| 60 |
+
"""
|
| 61 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 62 |
+
"""
|
| 63 |
+
HF_TOKEN=os.getenv('TOKEN')
|
| 64 |
+
login(HF_TOKEN)
|
| 65 |
|
| 66 |
+
model = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 67 |
+
#model = "swiss-ai/Apertus-8B-Instruct-2509"
|
|
|
|
| 68 |
|
| 69 |
+
client = InferenceClient(model)
|
| 70 |
|
|
|
|
| 71 |
folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
| 74 |
|
| 75 |
+
vector_db = FAISS.load_local("faiss_index_mpnet_cos", embeddings, allow_dangerous_deserialization=True, distance_strategy=DistanceStrategy.COSINE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
df = pd.read_csv("bger_cedh_db 1954-2024.csv")
|
|
|
|
| 78 |
|
| 79 |
+
retriever_tool = RetrieverTool(vector_db)
|
| 80 |
+
agent = ToolCallingAgent(tools=[retriever_tool], model=HfApiModel(model))
|
| 81 |
|
| 82 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, score,):
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
print(datetime.now())
|
| 85 |
+
context = retriever_tool(message)
|
| 86 |
+
|
| 87 |
+
print(message)
|
| 88 |
|
| 89 |
+
# is_law = client.text_generation(f"""Given the user question below, classify it as either being about "Law" or "Other".
|
| 90 |
+
#Do NOT respond with more than one word.
|
| 91 |
+
#Question:
|
| 92 |
+
#{message}""")
|
| 93 |
|
| 94 |
+
# print(is_law)
|
| 95 |
+
|
| 96 |
+
if True: #is_law.lower() != "other":
|
| 97 |
+
prompt = f"""Given the question and supporting documents below, give a comprehensive answer to the question.
|
| 98 |
Respond only to the question asked, response should be relevant to the question and in the same language as the question.
|
| 99 |
Provide the number of the source document when relevant, as well as the link to the document.
|
| 100 |
If you cannot find information, do not give up and try calling your retriever again with different arguments!
|
| 101 |
Always give url of the sources at the end and only answer in the language the question is asked.
|
| 102 |
+
|
| 103 |
Question:
|
| 104 |
+
{message}
|
| 105 |
+
|
| 106 |
{context}
|
| 107 |
"""
|
| 108 |
+
else:
|
| 109 |
+
prompt = f"""A user wrote the following message, please answer him to best of your knowledge in the language of his message:
|
| 110 |
+
{message}"""
|
| 111 |
+
|
| 112 |
messages = [{"role": "system", "content": system_message}]
|
| 113 |
|
| 114 |
+
for val in history:
|
| 115 |
+
if val[0]:
|
| 116 |
+
messages.append({"role": "user", "content": val[0]})
|
| 117 |
+
if val[1]:
|
| 118 |
+
messages.append({"role": "assistant", "content": val[1]})
|
|
|
|
| 119 |
|
| 120 |
messages.append({"role": "user", "content": prompt})
|
| 121 |
|
| 122 |
+
response = ""
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
for message in client.chat_completion(
|
| 126 |
+
messages,
|
| 127 |
max_tokens=max_tokens,
|
| 128 |
+
stream=True,
|
| 129 |
temperature=temperature,
|
| 130 |
top_p=top_p,
|
| 131 |
):
|
| 132 |
+
token = message.choices[0].delta.content
|
| 133 |
+
|
| 134 |
+
response += token
|
| 135 |
+
yield response
|
| 136 |
|
| 137 |
|
| 138 |
+
"""
|
| 139 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 140 |
+
"""
|
| 141 |
demo = gr.ChatInterface(
|
| 142 |
respond,
|
| 143 |
additional_inputs=[
|
| 144 |
+
gr.Textbox(value="You are assisting a jurist or a layer in finding relevant Swiss Jurisprudence cases to their question.", label="System message"),
|
| 145 |
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"),
|
| 146 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
|
| 147 |
+
gr.Slider(
|
| 148 |
+
minimum=0.1,
|
| 149 |
+
maximum=1.0,
|
| 150 |
+
value=0.95,
|
| 151 |
+
step=0.05,
|
| 152 |
+
label="Top-p (nucleus sampling)",
|
| 153 |
+
),
|
| 154 |
gr.Slider(minimum=0, maximum=1, value=0.75, step=0.05, label="Score Threshold"),
|
| 155 |
],
|
| 156 |
description="# 📜 ALexI: Artificial Legal Intelligence for Swiss Jurisprudence",
|
| 157 |
)
|
| 158 |
|
| 159 |
+
|
| 160 |
if __name__ == "__main__":
|
| 161 |
print("Ready!")
|
| 162 |
+
demo.launch(debug=True)
|