Spaces:
Runtime error
Runtime error
new model and fixed random seed
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import os
|
|
| 6 |
|
| 7 |
from PIL import Image
|
| 8 |
from io import BytesIO
|
|
|
|
| 9 |
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig, DonutProcessor, DonutImageProcessor, AutoTokenizer
|
| 10 |
|
| 11 |
from logits_ngrams import NoRepeatNGramLogitsProcessor, get_table_token_ids
|
|
@@ -29,6 +30,7 @@ def run_prediction(sample, model, processor, mode):
|
|
| 29 |
np.float32,
|
| 30 |
), return_tensors="pt").pixel_values
|
| 31 |
|
|
|
|
| 32 |
with torch.no_grad():
|
| 33 |
outputs = model.generate(
|
| 34 |
pixel_values.to(device),
|
|
@@ -37,7 +39,7 @@ def run_prediction(sample, model, processor, mode):
|
|
| 37 |
do_sample=True,
|
| 38 |
top_p=0.92,
|
| 39 |
top_k=5,
|
| 40 |
-
no_repeat_ngram_size=
|
| 41 |
num_beams=3,
|
| 42 |
output_attentions=False,
|
| 43 |
output_hidden_states=False,
|
|
@@ -81,7 +83,7 @@ else:
|
|
| 81 |
st.image(image, caption='Your target document')
|
| 82 |
|
| 83 |
with st.spinner(f'Processing the document ...'):
|
| 84 |
-
pre_trained_model = "unstructuredio/chipper-fast-fine-tuning
|
| 85 |
processor = DonutProcessor.from_pretrained(pre_trained_model, token=os.environ['HF_TOKEN'])
|
| 86 |
|
| 87 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 6 |
|
| 7 |
from PIL import Image
|
| 8 |
from io import BytesIO
|
| 9 |
+
import transformers
|
| 10 |
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig, DonutProcessor, DonutImageProcessor, AutoTokenizer
|
| 11 |
|
| 12 |
from logits_ngrams import NoRepeatNGramLogitsProcessor, get_table_token_ids
|
|
|
|
| 30 |
np.float32,
|
| 31 |
), return_tensors="pt").pixel_values
|
| 32 |
|
| 33 |
+
transformers.set_seed(42)
|
| 34 |
with torch.no_grad():
|
| 35 |
outputs = model.generate(
|
| 36 |
pixel_values.to(device),
|
|
|
|
| 39 |
do_sample=True,
|
| 40 |
top_p=0.92,
|
| 41 |
top_k=5,
|
| 42 |
+
no_repeat_ngram_size=10,
|
| 43 |
num_beams=3,
|
| 44 |
output_attentions=False,
|
| 45 |
output_hidden_states=False,
|
|
|
|
| 83 |
st.image(image, caption='Your target document')
|
| 84 |
|
| 85 |
with st.spinner(f'Processing the document ...'):
|
| 86 |
+
pre_trained_model = "unstructuredio/chipper-fast-fine-tuning"
|
| 87 |
processor = DonutProcessor.from_pretrained(pre_trained_model, token=os.environ['HF_TOKEN'])
|
| 88 |
|
| 89 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|