Spaces:
Running
Running
Upload 7 files
Browse files- .dockerignore +26 -0
- Dockerfile +30 -0
- app.py +204 -0
- document_parser.py +142 -0
- requirements.txt +15 -0
- summarizer.py +122 -0
- utils.py +93 -0
.dockerignore
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
*.pyc
|
| 3 |
+
*.pyo
|
| 4 |
+
*.pyd
|
| 5 |
+
.Python
|
| 6 |
+
env
|
| 7 |
+
venv
|
| 8 |
+
.venv
|
| 9 |
+
pip-log.txt
|
| 10 |
+
pip-delete-this-directory.txt
|
| 11 |
+
.tox
|
| 12 |
+
.coverage
|
| 13 |
+
.coverage.*
|
| 14 |
+
.cache
|
| 15 |
+
nosetests.xml
|
| 16 |
+
coverage.xml
|
| 17 |
+
*.cover
|
| 18 |
+
*.log
|
| 19 |
+
.git
|
| 20 |
+
.mypy_cache
|
| 21 |
+
.pytest_cache
|
| 22 |
+
.hypothesis
|
| 23 |
+
.DS_Store
|
| 24 |
+
*.swp
|
| 25 |
+
*.swo
|
| 26 |
+
*~
|
Dockerfile
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
# Install system dependencies for document processing
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
+
ffmpeg \
|
| 8 |
+
libmagic1 \
|
| 9 |
+
libmagic-dev \
|
| 10 |
+
poppler-utils \
|
| 11 |
+
antiword \
|
| 12 |
+
unrtf \
|
| 13 |
+
tesseract-ocr \
|
| 14 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
+
|
| 16 |
+
# Copy requirements and install Python dependencies
|
| 17 |
+
COPY requirements.txt .
|
| 18 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 19 |
+
|
| 20 |
+
# Copy application code
|
| 21 |
+
COPY . .
|
| 22 |
+
|
| 23 |
+
# Create temp directory for file processing
|
| 24 |
+
RUN mkdir -p /tmp/materials
|
| 25 |
+
|
| 26 |
+
# Expose port
|
| 27 |
+
EXPOSE 7861
|
| 28 |
+
|
| 29 |
+
# Start the application
|
| 30 |
+
CMD uvicorn app:app --host 0.0.0.0 --port 7861
|
app.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
import uvicorn
|
| 4 |
+
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
import aiofiles
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import traceback
|
| 9 |
+
import logging
|
| 10 |
+
from typing import List, Optional
|
| 11 |
+
|
| 12 |
+
# Setup logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
app = FastAPI(title="Material Summarizer API")
|
| 17 |
+
|
| 18 |
+
from dotenv import load_dotenv
|
| 19 |
+
load_dotenv()
|
| 20 |
+
|
| 21 |
+
# Get URLs from environment
|
| 22 |
+
FRONTEND_URL = os.getenv('FRONTEND_URL')
|
| 23 |
+
BACKEND_URL = os.getenv('BACKEND_URL', 'http://localhost:5000')
|
| 24 |
+
|
| 25 |
+
# CORS middleware
|
| 26 |
+
app.add_middleware(
|
| 27 |
+
CORSMiddleware,
|
| 28 |
+
allow_origins=["FRONTEND_URL, BACKEND_URL"], # Adjust in production
|
| 29 |
+
allow_credentials=True,
|
| 30 |
+
allow_methods=["*"],
|
| 31 |
+
allow_headers=["*"],
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Import processing functions
|
| 35 |
+
try:
|
| 36 |
+
from document_parser import parse_document
|
| 37 |
+
from summarizer import summarize_text
|
| 38 |
+
from utils import chunked_summarize
|
| 39 |
+
DEPENDENCIES_LOADED = True
|
| 40 |
+
logger.info("All AI dependencies loaded successfully")
|
| 41 |
+
except ImportError as e:
|
| 42 |
+
logger.error(f"Import error: {e}")
|
| 43 |
+
DEPENDENCIES_LOADED = False
|
| 44 |
+
|
| 45 |
+
@app.get("/")
|
| 46 |
+
async def root():
|
| 47 |
+
return {"message": "Material Summarizer API", "status": "running"}
|
| 48 |
+
|
| 49 |
+
@app.get("/health")
|
| 50 |
+
async def health_check():
|
| 51 |
+
status = "healthy" if DEPENDENCIES_LOADED else "missing_dependencies"
|
| 52 |
+
return {
|
| 53 |
+
"status": status,
|
| 54 |
+
"service": "material-summarizer",
|
| 55 |
+
"dependencies_loaded": DEPENDENCIES_LOADED
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
@app.post("/summarize-document")
|
| 59 |
+
async def summarize_document(
|
| 60 |
+
file: UploadFile = File(...),
|
| 61 |
+
max_summary_length: Optional[int] = 1000,
|
| 62 |
+
chunk_size: Optional[int] = 1500
|
| 63 |
+
):
|
| 64 |
+
"""
|
| 65 |
+
Summarize uploaded document (PDF, DOCX, TXT, etc.)
|
| 66 |
+
"""
|
| 67 |
+
if not DEPENDENCIES_LOADED:
|
| 68 |
+
raise HTTPException(
|
| 69 |
+
status_code=500,
|
| 70 |
+
detail="Required AI dependencies not loaded. Check server logs."
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
temp_file_path = None
|
| 74 |
+
|
| 75 |
+
try:
|
| 76 |
+
# Validate file type
|
| 77 |
+
allowed_extensions = {'.pdf', '.docx', '.doc', '.txt', '.pptx', '.ppt'}
|
| 78 |
+
file_extension = os.path.splitext(file.filename)[1].lower()
|
| 79 |
+
|
| 80 |
+
if file_extension not in allowed_extensions:
|
| 81 |
+
raise HTTPException(
|
| 82 |
+
status_code=400,
|
| 83 |
+
detail=f"Unsupported document format. Allowed: {', '.join(allowed_extensions)}"
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Create temporary file
|
| 87 |
+
temp_file_path = f"temp_{file.filename}"
|
| 88 |
+
|
| 89 |
+
# Save uploaded file
|
| 90 |
+
logger.info(f"Saving uploaded file: {file.filename}")
|
| 91 |
+
async with aiofiles.open(temp_file_path, 'wb') as out_file:
|
| 92 |
+
content = await file.read()
|
| 93 |
+
await out_file.write(content)
|
| 94 |
+
|
| 95 |
+
start_time = datetime.now()
|
| 96 |
+
|
| 97 |
+
# 1. Parse document
|
| 98 |
+
logger.info("Step 1: Parsing document...")
|
| 99 |
+
if not os.path.exists(temp_file_path):
|
| 100 |
+
raise HTTPException(status_code=500, detail="Document file not found after upload")
|
| 101 |
+
|
| 102 |
+
document_text = parse_document(temp_file_path, file_extension)
|
| 103 |
+
logger.info(f"Extracted text length: {len(document_text)} characters")
|
| 104 |
+
|
| 105 |
+
if not document_text or len(document_text.strip()) < 10:
|
| 106 |
+
raise HTTPException(status_code=500, detail="Document parsing failed or content too short")
|
| 107 |
+
|
| 108 |
+
# 2. Summarize text with chunking
|
| 109 |
+
logger.info("Step 2: Generating summary...")
|
| 110 |
+
|
| 111 |
+
def custom_summarize_func(text):
|
| 112 |
+
return summarize_text(
|
| 113 |
+
text,
|
| 114 |
+
model_name="facebook/bart-large-cnn",
|
| 115 |
+
max_length=max_summary_length,
|
| 116 |
+
min_length=min(100, max_summary_length // 3)
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
final_summary = chunked_summarize(
|
| 120 |
+
text=document_text,
|
| 121 |
+
summarize_func=custom_summarize_func,
|
| 122 |
+
max_chunk_size=chunk_size
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
if not final_summary or len(final_summary.strip()) < 10:
|
| 126 |
+
raise HTTPException(status_code=500, detail="Summary generation failed")
|
| 127 |
+
|
| 128 |
+
processing_time = (datetime.now() - start_time).total_seconds()
|
| 129 |
+
|
| 130 |
+
logger.info(f"Summarization completed in {processing_time:.2f} seconds")
|
| 131 |
+
|
| 132 |
+
return {
|
| 133 |
+
"success": True,
|
| 134 |
+
"summary": final_summary,
|
| 135 |
+
"original_length": len(document_text),
|
| 136 |
+
"summary_length": len(final_summary),
|
| 137 |
+
"processing_time": processing_time,
|
| 138 |
+
"file_type": file_extension
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
except HTTPException:
|
| 142 |
+
raise
|
| 143 |
+
except Exception as e:
|
| 144 |
+
logger.error(f"Error processing document: {str(e)}")
|
| 145 |
+
logger.error(traceback.format_exc())
|
| 146 |
+
raise HTTPException(
|
| 147 |
+
status_code=500,
|
| 148 |
+
detail=f"Document processing failed: {str(e)}"
|
| 149 |
+
)
|
| 150 |
+
finally:
|
| 151 |
+
# Cleanup temporary files
|
| 152 |
+
try:
|
| 153 |
+
if temp_file_path and os.path.exists(temp_file_path):
|
| 154 |
+
os.remove(temp_file_path)
|
| 155 |
+
logger.info(f"Cleaned up: {temp_file_path}")
|
| 156 |
+
except Exception as cleanup_error:
|
| 157 |
+
logger.error(f"Cleanup error: {cleanup_error}")
|
| 158 |
+
|
| 159 |
+
@app.post("/batch-summarize")
|
| 160 |
+
async def batch_summarize_documents(files: List[UploadFile] = File(...)):
|
| 161 |
+
"""
|
| 162 |
+
Summarize multiple documents in batch
|
| 163 |
+
"""
|
| 164 |
+
if not DEPENDENCIES_LOADED:
|
| 165 |
+
raise HTTPException(
|
| 166 |
+
status_code=500,
|
| 167 |
+
detail="Required AI dependencies not loaded. Check server logs."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
results = []
|
| 171 |
+
|
| 172 |
+
for file in files:
|
| 173 |
+
try:
|
| 174 |
+
# Use the single document summarization function
|
| 175 |
+
result = await summarize_document(file)
|
| 176 |
+
result["filename"] = file.filename
|
| 177 |
+
results.append(result)
|
| 178 |
+
except Exception as e:
|
| 179 |
+
results.append({
|
| 180 |
+
"success": False,
|
| 181 |
+
"filename": file.filename,
|
| 182 |
+
"error": str(e)
|
| 183 |
+
})
|
| 184 |
+
|
| 185 |
+
return {
|
| 186 |
+
"success": True,
|
| 187 |
+
"processed_files": len(results),
|
| 188 |
+
"results": results
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
if __name__ == "__main__":
|
| 192 |
+
logger.info("Starting Material Summarizer Server...")
|
| 193 |
+
logger.info("Dependencies loaded: %s", DEPENDENCIES_LOADED)
|
| 194 |
+
|
| 195 |
+
if not DEPENDENCIES_LOADED:
|
| 196 |
+
logger.error("CRITICAL: AI dependencies not loaded. Document processing will not work!")
|
| 197 |
+
|
| 198 |
+
port = int(os.environ.get("MATERIAL_PORT", 7861))
|
| 199 |
+
uvicorn.run(
|
| 200 |
+
"app:app",
|
| 201 |
+
host="0.0.0.0",
|
| 202 |
+
port=port,
|
| 203 |
+
reload=False
|
| 204 |
+
)
|
document_parser.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
from typing import Optional
|
| 4 |
+
import pdfplumber
|
| 5 |
+
from docx import Document
|
| 6 |
+
import PyPDF2
|
| 7 |
+
from pptx import Presentation
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
def parse_document(file_path: str, file_extension: str) -> str:
|
| 12 |
+
"""
|
| 13 |
+
Parse different document formats and extract text
|
| 14 |
+
"""
|
| 15 |
+
try:
|
| 16 |
+
if file_extension == '.pdf':
|
| 17 |
+
return parse_pdf(file_path)
|
| 18 |
+
elif file_extension in ['.docx', '.doc']:
|
| 19 |
+
return parse_docx(file_path)
|
| 20 |
+
elif file_extension in ['.pptx', '.ppt']:
|
| 21 |
+
return parse_pptx(file_path)
|
| 22 |
+
elif file_extension == '.txt':
|
| 23 |
+
return parse_txt(file_path)
|
| 24 |
+
else:
|
| 25 |
+
raise ValueError(f"Unsupported file format: {file_extension}")
|
| 26 |
+
except Exception as e:
|
| 27 |
+
logger.error(f"Error parsing document {file_path}: {e}")
|
| 28 |
+
raise
|
| 29 |
+
|
| 30 |
+
def parse_pdf(file_path: str) -> str:
|
| 31 |
+
"""
|
| 32 |
+
Extract text from PDF using multiple methods for better coverage
|
| 33 |
+
"""
|
| 34 |
+
text = ""
|
| 35 |
+
|
| 36 |
+
# Method 1: Use pdfplumber (better for text-based PDFs)
|
| 37 |
+
try:
|
| 38 |
+
with pdfplumber.open(file_path) as pdf:
|
| 39 |
+
for page in pdf.pages:
|
| 40 |
+
page_text = page.extract_text()
|
| 41 |
+
if page_text:
|
| 42 |
+
text += page_text + "\n"
|
| 43 |
+
except Exception as e:
|
| 44 |
+
logger.warning(f"pdfplumber failed: {e}")
|
| 45 |
+
|
| 46 |
+
# Method 2: Use PyPDF2 as fallback
|
| 47 |
+
if not text.strip():
|
| 48 |
+
try:
|
| 49 |
+
with open(file_path, 'rb') as file:
|
| 50 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
| 51 |
+
for page in pdf_reader.pages:
|
| 52 |
+
page_text = page.extract_text()
|
| 53 |
+
if page_text:
|
| 54 |
+
text += page_text + "\n"
|
| 55 |
+
except Exception as e:
|
| 56 |
+
logger.warning(f"PyPDF2 failed: {e}")
|
| 57 |
+
|
| 58 |
+
if not text.strip():
|
| 59 |
+
raise ValueError("Could not extract text from PDF")
|
| 60 |
+
|
| 61 |
+
return clean_text(text)
|
| 62 |
+
|
| 63 |
+
def parse_docx(file_path: str) -> str:
|
| 64 |
+
"""
|
| 65 |
+
Extract text from DOCX/DOC files
|
| 66 |
+
"""
|
| 67 |
+
try:
|
| 68 |
+
doc = Document(file_path)
|
| 69 |
+
text = ""
|
| 70 |
+
|
| 71 |
+
# Extract paragraphs
|
| 72 |
+
for paragraph in doc.paragraphs:
|
| 73 |
+
if paragraph.text.strip():
|
| 74 |
+
text += paragraph.text + "\n"
|
| 75 |
+
|
| 76 |
+
# Extract tables
|
| 77 |
+
for table in doc.tables:
|
| 78 |
+
for row in table.rows:
|
| 79 |
+
for cell in row.cells:
|
| 80 |
+
if cell.text.strip():
|
| 81 |
+
text += cell.text + "\n"
|
| 82 |
+
|
| 83 |
+
return clean_text(text)
|
| 84 |
+
except Exception as e:
|
| 85 |
+
logger.error(f"Error parsing DOCX file: {e}")
|
| 86 |
+
raise
|
| 87 |
+
|
| 88 |
+
def parse_pptx(file_path: str) -> str:
|
| 89 |
+
"""
|
| 90 |
+
Extract text from PowerPoint files
|
| 91 |
+
"""
|
| 92 |
+
try:
|
| 93 |
+
prs = Presentation(file_path)
|
| 94 |
+
text = ""
|
| 95 |
+
|
| 96 |
+
for slide in prs.slides:
|
| 97 |
+
for shape in slide.shapes:
|
| 98 |
+
if hasattr(shape, "text") and shape.text.strip():
|
| 99 |
+
text += shape.text + "\n"
|
| 100 |
+
|
| 101 |
+
return clean_text(text)
|
| 102 |
+
except Exception as e:
|
| 103 |
+
logger.error(f"Error parsing PPTX file: {e}")
|
| 104 |
+
raise
|
| 105 |
+
|
| 106 |
+
def parse_txt(file_path: str) -> str:
|
| 107 |
+
"""
|
| 108 |
+
Extract text from plain text files
|
| 109 |
+
"""
|
| 110 |
+
try:
|
| 111 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 112 |
+
text = file.read()
|
| 113 |
+
return clean_text(text)
|
| 114 |
+
except UnicodeDecodeError:
|
| 115 |
+
# Try different encodings
|
| 116 |
+
for encoding in ['latin-1', 'cp1252', 'iso-8859-1']:
|
| 117 |
+
try:
|
| 118 |
+
with open(file_path, 'r', encoding=encoding) as file:
|
| 119 |
+
text = file.read()
|
| 120 |
+
return clean_text(text)
|
| 121 |
+
except UnicodeDecodeError:
|
| 122 |
+
continue
|
| 123 |
+
raise ValueError("Could not decode text file with any encoding")
|
| 124 |
+
|
| 125 |
+
def clean_text(text: str) -> str:
|
| 126 |
+
"""
|
| 127 |
+
Clean and normalize extracted text
|
| 128 |
+
"""
|
| 129 |
+
# Remove excessive whitespace
|
| 130 |
+
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
| 131 |
+
|
| 132 |
+
# Remove very short lines that are likely formatting artifacts
|
| 133 |
+
meaningful_lines = [line for line in lines if len(line) > 2]
|
| 134 |
+
|
| 135 |
+
# Join with proper spacing
|
| 136 |
+
cleaned_text = '\n'.join(meaningful_lines)
|
| 137 |
+
|
| 138 |
+
# Remove multiple consecutive newlines
|
| 139 |
+
while '\n\n\n' in cleaned_text:
|
| 140 |
+
cleaned_text = cleaned_text.replace('\n\n\n', '\n\n')
|
| 141 |
+
|
| 142 |
+
return cleaned_text.strip()
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn==0.24.0
|
| 3 |
+
python-multipart==0.0.6
|
| 4 |
+
aiofiles==23.2.1
|
| 5 |
+
python-dotenv==1.0.0
|
| 6 |
+
transformers==4.35.2
|
| 7 |
+
torch==2.6.0 --index-url https://download.pytorch.org/whl/cpu
|
| 8 |
+
accelerate==0.24.1
|
| 9 |
+
sentence-transformers==2.2.2
|
| 10 |
+
numpy==1.24.3
|
| 11 |
+
pypdf2==3.0.1
|
| 12 |
+
python-magic==0.4.27
|
| 13 |
+
pdfplumber==0.10.3
|
| 14 |
+
python-docx==1.1.0
|
| 15 |
+
python-pptx==0.6.21
|
summarizer.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline, AutoTokenizer
|
| 2 |
+
import logging
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
logger = logging.getLogger(__name__)
|
| 6 |
+
|
| 7 |
+
# Global summarizer instance for better performance
|
| 8 |
+
_summarizer = None
|
| 9 |
+
_tokenizer = None
|
| 10 |
+
|
| 11 |
+
def get_summarizer(model_name: str = "facebook/bart-large-cnn"):
|
| 12 |
+
"""Get or create summarizer instance with caching"""
|
| 13 |
+
global _summarizer, _tokenizer
|
| 14 |
+
|
| 15 |
+
if _summarizer is None:
|
| 16 |
+
try:
|
| 17 |
+
_summarizer = pipeline(
|
| 18 |
+
"summarization",
|
| 19 |
+
model=model_name,
|
| 20 |
+
tokenizer=model_name
|
| 21 |
+
)
|
| 22 |
+
_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 23 |
+
logger.info(f"Summarizer model {model_name} loaded successfully")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
logger.error(f"Failed to load summarizer: {e}")
|
| 26 |
+
raise
|
| 27 |
+
|
| 28 |
+
return _summarizer, _tokenizer
|
| 29 |
+
|
| 30 |
+
def summarize_text(
|
| 31 |
+
text: str,
|
| 32 |
+
model_name: str = "facebook/bart-large-cnn",
|
| 33 |
+
max_length: int = 500,
|
| 34 |
+
min_length: int = 200,
|
| 35 |
+
compression_ratio: Optional[float] = None
|
| 36 |
+
) -> str:
|
| 37 |
+
"""
|
| 38 |
+
Summarize text using transformer models with enhanced error handling
|
| 39 |
+
"""
|
| 40 |
+
try:
|
| 41 |
+
summarizer, tokenizer = get_summarizer(model_name)
|
| 42 |
+
|
| 43 |
+
# If text is too short, return as is
|
| 44 |
+
if len(text.split()) < 30:
|
| 45 |
+
return text
|
| 46 |
+
|
| 47 |
+
# Calculate appropriate lengths
|
| 48 |
+
word_count = len(text.split())
|
| 49 |
+
|
| 50 |
+
if compression_ratio:
|
| 51 |
+
max_length = min(max_length, int(word_count * compression_ratio))
|
| 52 |
+
min_length = min(min_length, max_length // 2)
|
| 53 |
+
else:
|
| 54 |
+
# Adaptive length calculation
|
| 55 |
+
if word_count < 100:
|
| 56 |
+
max_length = min(100, word_count - 10)
|
| 57 |
+
min_length = max(30, max_length // 2)
|
| 58 |
+
elif word_count < 500:
|
| 59 |
+
max_length = min(150, word_count // 3)
|
| 60 |
+
min_length = max(50, max_length // 2)
|
| 61 |
+
else:
|
| 62 |
+
max_length = min(max_length, word_count // 4)
|
| 63 |
+
min_length = min(min_length, max_length // 3)
|
| 64 |
+
|
| 65 |
+
# Ensure min_length < max_length
|
| 66 |
+
min_length = min(min_length, max_length - 1)
|
| 67 |
+
|
| 68 |
+
# Tokenize to check length
|
| 69 |
+
tokens = tokenizer.encode(text)
|
| 70 |
+
if len(tokens) > tokenizer.model_max_length:
|
| 71 |
+
# Truncate if too long
|
| 72 |
+
tokens = tokens[:tokenizer.model_max_length - 100]
|
| 73 |
+
text = tokenizer.decode(tokens, skip_special_tokens=True)
|
| 74 |
+
|
| 75 |
+
logger.info(f"Summarizing text: {word_count} words -> {max_length} max tokens")
|
| 76 |
+
|
| 77 |
+
summary = summarizer(
|
| 78 |
+
text,
|
| 79 |
+
max_length=max_length,
|
| 80 |
+
min_length=min_length,
|
| 81 |
+
do_sample=False,
|
| 82 |
+
truncation=True,
|
| 83 |
+
clean_up_tokenization_spaces=True
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
result = summary[0]['summary_text'].strip()
|
| 87 |
+
|
| 88 |
+
if not result or len(result.split()) < 3:
|
| 89 |
+
raise ValueError("Generated summary is too short or empty")
|
| 90 |
+
|
| 91 |
+
return result
|
| 92 |
+
|
| 93 |
+
except Exception as e:
|
| 94 |
+
logger.error(f"Summarization error: {e}")
|
| 95 |
+
# Enhanced fallback: extract key sentences
|
| 96 |
+
return extract_key_sentences(text, min(3, max_length // 50))
|
| 97 |
+
|
| 98 |
+
def extract_key_sentences(text: str, num_sentences: int = 3) -> str:
|
| 99 |
+
"""
|
| 100 |
+
Fallback method to extract key sentences when summarization fails
|
| 101 |
+
"""
|
| 102 |
+
sentences = text.split('.')
|
| 103 |
+
meaningful_sentences = [s.strip() for s in sentences if len(s.strip()) > 10]
|
| 104 |
+
|
| 105 |
+
if not meaningful_sentences:
|
| 106 |
+
return text[:500] + "..." if len(text) > 500 else text
|
| 107 |
+
|
| 108 |
+
# Simple heuristic: take first, middle, and last sentences
|
| 109 |
+
if len(meaningful_sentences) <= num_sentences:
|
| 110 |
+
return '. '.join(meaningful_sentences) + '.'
|
| 111 |
+
|
| 112 |
+
key_indices = [0] # First sentence
|
| 113 |
+
|
| 114 |
+
# Add a middle sentence
|
| 115 |
+
if len(meaningful_sentences) > 2:
|
| 116 |
+
key_indices.append(len(meaningful_sentences) // 2)
|
| 117 |
+
|
| 118 |
+
# Add last sentence
|
| 119 |
+
key_indices.append(len(meaningful_sentences) - 1)
|
| 120 |
+
|
| 121 |
+
key_sentences = [meaningful_sentences[i] for i in key_indices[:num_sentences]]
|
| 122 |
+
return '. '.join(key_sentences) + '.'
|
utils.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import List, Callable
|
| 3 |
+
|
| 4 |
+
logger = logging.getLogger(__name__)
|
| 5 |
+
|
| 6 |
+
def chunk_text(text: str, chunk_size: int = 1500, overlap: int = 200) -> List[str]:
|
| 7 |
+
"""
|
| 8 |
+
Split text into overlapping chunks for processing long documents
|
| 9 |
+
"""
|
| 10 |
+
chunks = []
|
| 11 |
+
start = 0
|
| 12 |
+
text_length = len(text)
|
| 13 |
+
|
| 14 |
+
# If text is shorter than chunk_size, return as single chunk
|
| 15 |
+
if text_length <= chunk_size:
|
| 16 |
+
return [text]
|
| 17 |
+
|
| 18 |
+
while start < text_length:
|
| 19 |
+
end = min(start + chunk_size, text_length)
|
| 20 |
+
|
| 21 |
+
# Try to break at sentence boundary
|
| 22 |
+
if end < text_length:
|
| 23 |
+
# Look for sentence end in the last 100 characters of chunk
|
| 24 |
+
sentence_end = max(
|
| 25 |
+
text.rfind('. ', start, end),
|
| 26 |
+
text.rfind('? ', start, end),
|
| 27 |
+
text.rfind('! ', start, end)
|
| 28 |
+
)
|
| 29 |
+
if sentence_end > start + chunk_size * 0.7: # Only if reasonable
|
| 30 |
+
end = sentence_end + 1
|
| 31 |
+
|
| 32 |
+
chunk = text[start:end].strip()
|
| 33 |
+
if chunk:
|
| 34 |
+
chunks.append(chunk)
|
| 35 |
+
|
| 36 |
+
start = end - overlap if end - overlap > start else end
|
| 37 |
+
|
| 38 |
+
# Prevent infinite loop
|
| 39 |
+
if start >= text_length:
|
| 40 |
+
break
|
| 41 |
+
|
| 42 |
+
return chunks
|
| 43 |
+
|
| 44 |
+
def chunked_summarize(
|
| 45 |
+
text: str,
|
| 46 |
+
summarize_func: Callable,
|
| 47 |
+
max_chunk_size: int = 1500,
|
| 48 |
+
overlap: int = 200
|
| 49 |
+
) -> str:
|
| 50 |
+
"""
|
| 51 |
+
Summarize long text by processing in chunks and combining results
|
| 52 |
+
"""
|
| 53 |
+
if len(text) <= max_chunk_size:
|
| 54 |
+
return summarize_func(text)
|
| 55 |
+
|
| 56 |
+
text_chunks = chunk_text(text, chunk_size=max_chunk_size, overlap=overlap)
|
| 57 |
+
logger.info(f"Processing {len(text_chunks)} chunks...")
|
| 58 |
+
|
| 59 |
+
partial_summaries = []
|
| 60 |
+
for i, chunk in enumerate(text_chunks):
|
| 61 |
+
logger.info(f"Summarizing chunk {i+1}/{len(text_chunks)}...")
|
| 62 |
+
try:
|
| 63 |
+
summary = summarize_func(chunk)
|
| 64 |
+
if summary and len(summary.strip()) > 10:
|
| 65 |
+
partial_summaries.append(summary)
|
| 66 |
+
except Exception as e:
|
| 67 |
+
logger.warning(f"Failed to summarize chunk {i+1}: {e}")
|
| 68 |
+
# Include original chunk as fallback
|
| 69 |
+
partial_summaries.append(chunk[:200] + "...")
|
| 70 |
+
|
| 71 |
+
if not partial_summaries:
|
| 72 |
+
return "Unable to generate summary from the document."
|
| 73 |
+
|
| 74 |
+
combined_summary_input = " ".join(partial_summaries)
|
| 75 |
+
|
| 76 |
+
# Final summarization if combined text is still long
|
| 77 |
+
if len(combined_summary_input) > max_chunk_size:
|
| 78 |
+
logger.info("Final summarization of combined chunks...")
|
| 79 |
+
try:
|
| 80 |
+
return summarize_func(combined_summary_input)
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logger.error(f"Final summarization failed: {e}")
|
| 83 |
+
# Return the combined partial summaries
|
| 84 |
+
return combined_summary_input
|
| 85 |
+
|
| 86 |
+
return combined_summary_input
|
| 87 |
+
|
| 88 |
+
def estimate_reading_time(text: str, words_per_minute: int = 200) -> int:
|
| 89 |
+
"""
|
| 90 |
+
Estimate reading time in minutes
|
| 91 |
+
"""
|
| 92 |
+
word_count = len(text.split())
|
| 93 |
+
return max(1, round(word_count / words_per_minute))
|