Spaces:
Runtime error
Runtime error
| import hashlib | |
| import os | |
| import uuid | |
| from typing import List, Tuple, Union, Dict | |
| import regex as re | |
| import sentencepiece as spm | |
| from indicnlp.normalize import indic_normalize | |
| from indicnlp.tokenize import indic_detokenize, indic_tokenize | |
| from indicnlp.tokenize.sentence_tokenize import DELIM_PAT_NO_DANDA, sentence_split | |
| from indicnlp.transliterate import unicode_transliterate | |
| from mosestokenizer import MosesSentenceSplitter | |
| from nltk.tokenize import sent_tokenize | |
| from sacremoses import MosesDetokenizer, MosesPunctNormalizer, MosesTokenizer | |
| from tqdm import tqdm | |
| from .flores_codes_map_indic import flores_codes, iso_to_flores | |
| from .normalize_punctuation import punc_norm | |
| from .normalize_regex_inference import EMAIL_PATTERN, normalize | |
| def split_sentences(paragraph: str, lang: str) -> List[str]: | |
| """ | |
| Splits the input text paragraph into sentences. It uses `moses` for English and | |
| `indic-nlp` for Indic languages. | |
| Args: | |
| paragraph (str): input text paragraph. | |
| lang (str): flores language code. | |
| Returns: | |
| List[str] -> list of sentences. | |
| """ | |
| if lang == "eng_Latn": | |
| with MosesSentenceSplitter(flores_codes[lang]) as splitter: | |
| sents_moses = splitter([paragraph]) | |
| sents_nltk = sent_tokenize(paragraph) | |
| if len(sents_nltk) < len(sents_moses): | |
| sents = sents_nltk | |
| else: | |
| sents = sents_moses | |
| return [sent.replace("\xad", "") for sent in sents] | |
| else: | |
| return sentence_split(paragraph, lang=flores_codes[lang], delim_pat=DELIM_PAT_NO_DANDA) | |
| def add_token(sent: str, src_lang: str, tgt_lang: str, delimiter: str = " ") -> str: | |
| """ | |
| Add special tokens indicating source and target language to the start of the input sentence. | |
| The resulting string will have the format: "`{src_lang} {tgt_lang} {input_sentence}`". | |
| Args: | |
| sent (str): input sentence to be translated. | |
| src_lang (str): flores lang code of the input sentence. | |
| tgt_lang (str): flores lang code in which the input sentence will be translated. | |
| delimiter (str): separator to add between language tags and input sentence (default: " "). | |
| Returns: | |
| str: input sentence with the special tokens added to the start. | |
| """ | |
| return src_lang + delimiter + tgt_lang + delimiter + sent | |
| def apply_lang_tags(sents: List[str], src_lang: str, tgt_lang: str) -> List[str]: | |
| """ | |
| Add special tokens indicating source and target language to the start of the each input sentence. | |
| Each resulting input sentence will have the format: "`{src_lang} {tgt_lang} {input_sentence}`". | |
| Args: | |
| sent (str): input sentence to be translated. | |
| src_lang (str): flores lang code of the input sentence. | |
| tgt_lang (str): flores lang code in which the input sentence will be translated. | |
| Returns: | |
| List[str]: list of input sentences with the special tokens added to the start. | |
| """ | |
| tagged_sents = [] | |
| for sent in sents: | |
| tagged_sent = add_token(sent.strip(), src_lang, tgt_lang) | |
| tagged_sents.append(tagged_sent) | |
| return tagged_sents | |
| def truncate_long_sentences( | |
| sents: List[str], placeholder_entity_map_sents: List[Dict] | |
| ) -> Tuple[List[str], List[Dict]]: | |
| """ | |
| Truncates the sentences that exceed the maximum sequence length. | |
| The maximum sequence for the IndicTrans2 model is limited to 256 tokens. | |
| Args: | |
| sents (List[str]): list of input sentences to truncate. | |
| Returns: | |
| Tuple[List[str], List[Dict]]: tuple containing the list of sentences with truncation applied and the updated placeholder entity maps. | |
| """ | |
| MAX_SEQ_LEN = 256 | |
| new_sents = [] | |
| placeholders = [] | |
| for j, sent in enumerate(sents): | |
| words = sent.split() | |
| num_words = len(words) | |
| if num_words > MAX_SEQ_LEN: | |
| sents = [] | |
| i = 0 | |
| while i <= len(words): | |
| sents.append(" ".join(words[i : i + MAX_SEQ_LEN])) | |
| i += MAX_SEQ_LEN | |
| placeholders.extend([placeholder_entity_map_sents[j]] * (len(sents))) | |
| new_sents.extend(sents) | |
| else: | |
| placeholders.append(placeholder_entity_map_sents[j]) | |
| new_sents.append(sent) | |
| return new_sents, placeholders | |
| class Model: | |
| """ | |
| Model class to run the IndicTransv2 models using python interface. | |
| """ | |
| def __init__( | |
| self, | |
| ckpt_dir: str, | |
| device: str = "cuda", | |
| input_lang_code_format: str = "flores", | |
| model_type: str = "ctranslate2", | |
| ): | |
| """ | |
| Initialize the model class. | |
| Args: | |
| ckpt_dir (str): path of the model checkpoint directory. | |
| device (str, optional): where to load the model (defaults: cuda). | |
| """ | |
| self.ckpt_dir = ckpt_dir | |
| self.en_tok = MosesTokenizer(lang="en") | |
| self.en_normalizer = MosesPunctNormalizer() | |
| self.en_detok = MosesDetokenizer(lang="en") | |
| self.xliterator = unicode_transliterate.UnicodeIndicTransliterator() | |
| print("Initializing sentencepiece model for SRC and TGT") | |
| self.sp_src = spm.SentencePieceProcessor( | |
| model_file=os.path.join(ckpt_dir, "vocab", "model.SRC") | |
| ) | |
| self.sp_tgt = spm.SentencePieceProcessor( | |
| model_file=os.path.join(ckpt_dir, "vocab", "model.TGT") | |
| ) | |
| self.input_lang_code_format = input_lang_code_format | |
| print("Initializing model for translation") | |
| # initialize the model | |
| if model_type == "ctranslate2": | |
| import ctranslate2 | |
| self.translator = ctranslate2.Translator( | |
| self.ckpt_dir, device=device | |
| ) # , compute_type="auto") | |
| self.translate_lines = self.ctranslate2_translate_lines | |
| elif model_type == "fairseq": | |
| from .custom_interactive import Translator | |
| self.translator = Translator( | |
| data_dir=os.path.join(self.ckpt_dir, "final_bin"), | |
| checkpoint_path=os.path.join(self.ckpt_dir, "model", "checkpoint_best.pt"), | |
| batch_size=100, | |
| ) | |
| self.translate_lines = self.fairseq_translate_lines | |
| else: | |
| raise NotImplementedError(f"Unknown model_type: {model_type}") | |
| def ctranslate2_translate_lines(self, lines: List[str]) -> List[str]: | |
| tokenized_sents = [x.strip().split(" ") for x in lines] | |
| translations = self.translator.translate_batch( | |
| tokenized_sents, | |
| max_batch_size=9216, | |
| batch_type="tokens", | |
| max_input_length=160, | |
| max_decoding_length=256, | |
| beam_size=5, | |
| ) | |
| translations = [" ".join(x.hypotheses[0]) for x in translations] | |
| return translations | |
| def fairseq_translate_lines(self, lines: List[str]) -> List[str]: | |
| return self.translator.translate(lines) | |
| def paragraphs_batch_translate__multilingual(self, batch_payloads: List[tuple]) -> List[str]: | |
| """ | |
| Translates a batch of input paragraphs (including pre/post processing) | |
| from any language to any language. | |
| Args: | |
| batch_payloads (List[tuple]): batch of long input-texts to be translated, each in format: (paragraph, src_lang, tgt_lang) | |
| Returns: | |
| List[str]: batch of paragraph-translations in the respective languages. | |
| """ | |
| paragraph_id_to_sentence_range = [] | |
| global__sents = [] | |
| global__preprocessed_sents = [] | |
| global__preprocessed_sents_placeholder_entity_map = [] | |
| for i in range(len(batch_payloads)): | |
| paragraph, src_lang, tgt_lang = batch_payloads[i] | |
| if self.input_lang_code_format == "iso": | |
| src_lang, tgt_lang = iso_to_flores[src_lang], iso_to_flores[tgt_lang] | |
| batch = split_sentences(paragraph, src_lang) | |
| global__sents.extend(batch) | |
| preprocessed_sents, placeholder_entity_map_sents = self.preprocess_batch( | |
| batch, src_lang, tgt_lang | |
| ) | |
| global_sentence_start_index = len(global__preprocessed_sents) | |
| global__preprocessed_sents.extend(preprocessed_sents) | |
| global__preprocessed_sents_placeholder_entity_map.extend(placeholder_entity_map_sents) | |
| paragraph_id_to_sentence_range.append( | |
| (global_sentence_start_index, len(global__preprocessed_sents)) | |
| ) | |
| translations = self.translate_lines(global__preprocessed_sents) | |
| translated_paragraphs = [] | |
| for paragraph_id, sentence_range in enumerate(paragraph_id_to_sentence_range): | |
| tgt_lang = batch_payloads[paragraph_id][2] | |
| if self.input_lang_code_format == "iso": | |
| tgt_lang = iso_to_flores[tgt_lang] | |
| postprocessed_sents = self.postprocess( | |
| translations[sentence_range[0] : sentence_range[1]], | |
| global__preprocessed_sents_placeholder_entity_map[ | |
| sentence_range[0] : sentence_range[1] | |
| ], | |
| tgt_lang, | |
| ) | |
| translated_paragraph = " ".join(postprocessed_sents) | |
| translated_paragraphs.append(translated_paragraph) | |
| return translated_paragraphs | |
| # translate a batch of sentences from src_lang to tgt_lang | |
| def batch_translate(self, batch: List[str], src_lang: str, tgt_lang: str) -> List[str]: | |
| """ | |
| Translates a batch of input sentences (including pre/post processing) | |
| from source language to target language. | |
| Args: | |
| batch (List[str]): batch of input sentences to be translated. | |
| src_lang (str): flores source language code. | |
| tgt_lang (str): flores target language code. | |
| Returns: | |
| List[str]: batch of translated-sentences generated by the model. | |
| """ | |
| assert isinstance(batch, list) | |
| if self.input_lang_code_format == "iso": | |
| src_lang, tgt_lang = iso_to_flores[src_lang], iso_to_flores[tgt_lang] | |
| preprocessed_sents, placeholder_entity_map_sents = self.preprocess_batch( | |
| batch, src_lang, tgt_lang | |
| ) | |
| translations = self.translate_lines(preprocessed_sents) | |
| return self.postprocess(translations, placeholder_entity_map_sents, tgt_lang) | |
| # translate a paragraph from src_lang to tgt_lang | |
| def translate_paragraph(self, paragraph: str, src_lang: str, tgt_lang: str) -> str: | |
| """ | |
| Translates an input text paragraph (including pre/post processing) | |
| from source language to target language. | |
| Args: | |
| paragraph (str): input text paragraph to be translated. | |
| src_lang (str): flores source language code. | |
| tgt_lang (str): flores target language code. | |
| Returns: | |
| str: paragraph translation generated by the model. | |
| """ | |
| assert isinstance(paragraph, str) | |
| if self.input_lang_code_format == "iso": | |
| flores_src_lang = iso_to_flores[src_lang] | |
| else: | |
| flores_src_lang = src_lang | |
| sents = split_sentences(paragraph, flores_src_lang) | |
| postprocessed_sents = self.batch_translate(sents, src_lang, tgt_lang) | |
| translated_paragraph = " ".join(postprocessed_sents) | |
| return translated_paragraph | |
| def preprocess_batch(self, batch: List[str], src_lang: str, tgt_lang: str) -> List[str]: | |
| """ | |
| Preprocess an array of sentences by normalizing, tokenization, and possibly transliterating it. It also tokenizes the | |
| normalized text sequences using sentence piece tokenizer and also adds language tags. | |
| Args: | |
| batch (List[str]): input list of sentences to preprocess. | |
| src_lang (str): flores language code of the input text sentences. | |
| tgt_lang (str): flores language code of the output text sentences. | |
| Returns: | |
| Tuple[List[str], List[Dict]]: a tuple of list of preprocessed input text sentences and also a corresponding list of dictionary | |
| mapping placeholders to their original values. | |
| """ | |
| preprocessed_sents, placeholder_entity_map_sents = self.preprocess(batch, lang=src_lang) | |
| tokenized_sents = self.apply_spm(preprocessed_sents) | |
| tokenized_sents, placeholder_entity_map_sents = truncate_long_sentences( | |
| tokenized_sents, placeholder_entity_map_sents | |
| ) | |
| tagged_sents = apply_lang_tags(tokenized_sents, src_lang, tgt_lang) | |
| return tagged_sents, placeholder_entity_map_sents | |
| def apply_spm(self, sents: List[str]) -> List[str]: | |
| """ | |
| Applies sentence piece encoding to the batch of input sentences. | |
| Args: | |
| sents (List[str]): batch of the input sentences. | |
| Returns: | |
| List[str]: batch of encoded sentences with sentence piece model | |
| """ | |
| return [" ".join(self.sp_src.encode(sent, out_type=str)) for sent in sents] | |
| def preprocess_sent( | |
| self, | |
| sent: str, | |
| normalizer: Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory], | |
| lang: str, | |
| ) -> Tuple[str, Dict]: | |
| """ | |
| Preprocess an input text sentence by normalizing, tokenization, and possibly transliterating it. | |
| Args: | |
| sent (str): input text sentence to preprocess. | |
| normalizer (Union[MosesPunctNormalizer, indic_normalize.IndicNormalizerFactory]): an object that performs normalization on the text. | |
| lang (str): flores language code of the input text sentence. | |
| Returns: | |
| Tuple[str, Dict]: A tuple containing the preprocessed input text sentence and a corresponding dictionary | |
| mapping placeholders to their original values. | |
| """ | |
| iso_lang = flores_codes[lang] | |
| sent = punc_norm(sent, iso_lang) | |
| sent, placeholder_entity_map = normalize(sent) | |
| transliterate = True | |
| if lang.split("_")[1] in ["Arab", "Aran", "Olck", "Mtei", "Latn"]: | |
| transliterate = False | |
| if iso_lang == "en": | |
| processed_sent = " ".join( | |
| self.en_tok.tokenize(self.en_normalizer.normalize(sent.strip()), escape=False) | |
| ) | |
| elif transliterate: | |
| # transliterates from the any specific language to devanagari | |
| # which is why we specify lang2_code as "hi". | |
| processed_sent = self.xliterator.transliterate( | |
| " ".join( | |
| indic_tokenize.trivial_tokenize(normalizer.normalize(sent.strip()), iso_lang) | |
| ), | |
| iso_lang, | |
| "hi", | |
| ).replace(" ् ", "्") | |
| else: | |
| # we only need to transliterate for joint training | |
| processed_sent = " ".join( | |
| indic_tokenize.trivial_tokenize(normalizer.normalize(sent.strip()), iso_lang) | |
| ) | |
| return processed_sent, placeholder_entity_map | |
| def preprocess(self, sents: List[str], lang: str): | |
| """ | |
| Preprocess an array of sentences by normalizing, tokenization, and possibly transliterating it. | |
| Args: | |
| batch (List[str]): input list of sentences to preprocess. | |
| lang (str): flores language code of the input text sentences. | |
| Returns: | |
| Tuple[List[str], List[Dict]]: a tuple of list of preprocessed input text sentences and also a corresponding list of dictionary | |
| mapping placeholders to their original values. | |
| """ | |
| processed_sents, placeholder_entity_map_sents = [], [] | |
| if lang == "eng_Latn": | |
| normalizer = None | |
| else: | |
| normfactory = indic_normalize.IndicNormalizerFactory() | |
| normalizer = normfactory.get_normalizer(flores_codes[lang]) | |
| for sent in sents: | |
| sent, placeholder_entity_map = self.preprocess_sent(sent, normalizer, lang) | |
| processed_sents.append(sent) | |
| placeholder_entity_map_sents.append(placeholder_entity_map) | |
| return processed_sents, placeholder_entity_map_sents | |
| def postprocess( | |
| self, | |
| sents: List[str], | |
| placeholder_entity_map: List[Dict], | |
| lang: str, | |
| common_lang: str = "hin_Deva", | |
| ) -> List[str]: | |
| """ | |
| Postprocesses a batch of input sentences after the translation generations. | |
| Args: | |
| sents (List[str]): batch of translated sentences to postprocess. | |
| placeholder_entity_map (List[Dict]): dictionary mapping placeholders to the original entity values. | |
| lang (str): flores language code of the input sentences. | |
| common_lang (str, optional): flores language code of the transliterated language (defaults: hin_Deva). | |
| Returns: | |
| List[str]: postprocessed batch of input sentences. | |
| """ | |
| lang_code, script_code = lang.split("_") | |
| # SPM decode | |
| for i in range(len(sents)): | |
| # sent_tokens = sents[i].split(" ") | |
| # sents[i] = self.sp_tgt.decode(sent_tokens) | |
| sents[i] = sents[i].replace(" ", "").replace("▁", " ").strip() | |
| # Fixes for Perso-Arabic scripts | |
| # TODO: Move these normalizations inside indic-nlp-library | |
| if script_code in {"Arab", "Aran"}: | |
| # UrduHack adds space before punctuations. Since the model was trained without fixing this issue, let's fix it now | |
| sents[i] = sents[i].replace(" ؟", "؟").replace(" ۔", "۔").replace(" ،", "،") | |
| # Kashmiri bugfix for palatalization: https://github.com/AI4Bharat/IndicTrans2/issues/11 | |
| sents[i] = sents[i].replace("ٮ۪", "ؠ") | |
| assert len(sents) == len(placeholder_entity_map) | |
| for i in range(0, len(sents)): | |
| for key in placeholder_entity_map[i].keys(): | |
| sents[i] = sents[i].replace(key, placeholder_entity_map[i][key]) | |
| # Detokenize and transliterate to native scripts if applicable | |
| postprocessed_sents = [] | |
| if lang == "eng_Latn": | |
| for sent in sents: | |
| postprocessed_sents.append(self.en_detok.detokenize(sent.split(" "))) | |
| else: | |
| for sent in sents: | |
| outstr = indic_detokenize.trivial_detokenize( | |
| self.xliterator.transliterate( | |
| sent, flores_codes[common_lang], flores_codes[lang] | |
| ), | |
| flores_codes[lang], | |
| ) | |
| # Oriya bug: indic-nlp-library produces ଯ଼ instead of ୟ when converting from Devanagari to Odia | |
| # TODO: Find out what's the issue with unicode transliterator for Oriya and fix it | |
| if lang_code == "ory": | |
| outstr = outstr.replace("ଯ଼", 'ୟ') | |
| postprocessed_sents.append(outstr) | |
| return postprocessed_sents | |