Spaces:
Runtime error
Runtime error
Commit
·
eb4334e
1
Parent(s):
8527cc7
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,12 +6,71 @@ from PIL import Image
|
|
| 6 |
from argparse import Namespace
|
| 7 |
import gradio as gr
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from diffusers import (
|
| 10 |
FlaxControlNetModel,
|
| 11 |
FlaxStableDiffusionControlNetPipeline,
|
| 12 |
)
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
args = Namespace(
|
| 16 |
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
|
| 17 |
revision="non-ema",
|
|
@@ -53,7 +112,8 @@ def infer(prompt, negative_prompt, image):
|
|
| 53 |
prompt_ids = pipeline.prepare_text_inputs(prompts)
|
| 54 |
prompt_ids = shard(prompt_ids)
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
|
| 58 |
processed_image = shard(processed_image)
|
| 59 |
|
|
@@ -73,7 +133,8 @@ def infer(prompt, negative_prompt, image):
|
|
| 73 |
|
| 74 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
| 75 |
|
| 76 |
-
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
with gr.Blocks(theme='gradio/soft') as demo:
|
|
@@ -84,7 +145,7 @@ with gr.Blocks(theme='gradio/soft') as demo:
|
|
| 84 |
prompt_input = gr.Textbox(label="Prompt")
|
| 85 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
| 86 |
input_image = gr.Image(label="Input Image")
|
| 87 |
-
output_image = gr.
|
| 88 |
submit_btn = gr.Button(value = "Submit")
|
| 89 |
inputs = [prompt_input, negative_prompt, input_image]
|
| 90 |
submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
|
|
|
|
| 6 |
from argparse import Namespace
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
+
import numpy as np
|
| 10 |
+
import mediapipe as mp
|
| 11 |
+
from mediapipe import solutions
|
| 12 |
+
from mediapipe.framework.formats import landmark_pb2
|
| 13 |
+
from mediapipe.tasks import python
|
| 14 |
+
from mediapipe.tasks.python import vision
|
| 15 |
+
import cv2
|
| 16 |
+
|
| 17 |
from diffusers import (
|
| 18 |
FlaxControlNetModel,
|
| 19 |
FlaxStableDiffusionControlNetPipeline,
|
| 20 |
)
|
| 21 |
|
| 22 |
|
| 23 |
+
# mediapipe annotation
|
| 24 |
+
MARGIN = 10 # pixels
|
| 25 |
+
FONT_SIZE = 1
|
| 26 |
+
FONT_THICKNESS = 1
|
| 27 |
+
HANDEDNESS_TEXT_COLOR = (88, 205, 54) # vibrant green
|
| 28 |
+
|
| 29 |
+
def draw_landmarks_on_image(rgb_image, detection_result):
|
| 30 |
+
hand_landmarks_list = detection_result.hand_landmarks
|
| 31 |
+
handedness_list = detection_result.handedness
|
| 32 |
+
annotated_image = np.zeros_like(rgb_image)
|
| 33 |
+
|
| 34 |
+
# Loop through the detected hands to visualize.
|
| 35 |
+
for idx in range(len(hand_landmarks_list)):
|
| 36 |
+
hand_landmarks = hand_landmarks_list[idx]
|
| 37 |
+
handedness = handedness_list[idx]
|
| 38 |
+
|
| 39 |
+
# Draw the hand landmarks.
|
| 40 |
+
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
| 41 |
+
hand_landmarks_proto.landmark.extend([
|
| 42 |
+
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
|
| 43 |
+
])
|
| 44 |
+
solutions.drawing_utils.draw_landmarks(
|
| 45 |
+
annotated_image,
|
| 46 |
+
hand_landmarks_proto,
|
| 47 |
+
solutions.hands.HAND_CONNECTIONS,
|
| 48 |
+
solutions.drawing_styles.get_default_hand_landmarks_style(),
|
| 49 |
+
solutions.drawing_styles.get_default_hand_connections_style())
|
| 50 |
+
|
| 51 |
+
return annotated_image
|
| 52 |
+
|
| 53 |
+
def generate_annotation(img):
|
| 54 |
+
"""img(input): numpy array
|
| 55 |
+
annotated_image(output): numpy array
|
| 56 |
+
"""
|
| 57 |
+
# STEP 2: Create an HandLandmarker object.
|
| 58 |
+
base_options = python.BaseOptions(model_asset_path='hand_landmarker.task')
|
| 59 |
+
options = vision.HandLandmarkerOptions(base_options=base_options,
|
| 60 |
+
num_hands=2)
|
| 61 |
+
detector = vision.HandLandmarker.create_from_options(options)
|
| 62 |
+
|
| 63 |
+
# STEP 3: Load the input image.
|
| 64 |
+
image = mp.Image(
|
| 65 |
+
image_format=mp.ImageFormat.SRGB, data=img)
|
| 66 |
+
|
| 67 |
+
# STEP 4: Detect hand landmarks from the input image.
|
| 68 |
+
detection_result = detector.detect(image)
|
| 69 |
+
|
| 70 |
+
# STEP 5: Process the classification result. In this case, visualize it.
|
| 71 |
+
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result)
|
| 72 |
+
return annotated_image
|
| 73 |
+
|
| 74 |
args = Namespace(
|
| 75 |
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
|
| 76 |
revision="non-ema",
|
|
|
|
| 112 |
prompt_ids = pipeline.prepare_text_inputs(prompts)
|
| 113 |
prompt_ids = shard(prompt_ids)
|
| 114 |
|
| 115 |
+
annotated_image = generate_annotation(image)
|
| 116 |
+
validation_image = Image.fromarray(annotated_image).convert("RGB")
|
| 117 |
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
|
| 118 |
processed_image = shard(processed_image)
|
| 119 |
|
|
|
|
| 133 |
|
| 134 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
| 135 |
|
| 136 |
+
results = [i for i in images]
|
| 137 |
+
return [annotated_image] + results
|
| 138 |
|
| 139 |
|
| 140 |
with gr.Blocks(theme='gradio/soft') as demo:
|
|
|
|
| 145 |
prompt_input = gr.Textbox(label="Prompt")
|
| 146 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
| 147 |
input_image = gr.Image(label="Input Image")
|
| 148 |
+
output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=3, height='auto')
|
| 149 |
submit_btn = gr.Button(value = "Submit")
|
| 150 |
inputs = [prompt_input, negative_prompt, input_image]
|
| 151 |
submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
|