Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,265 Bytes
b4bbb92 37f392f b4bbb92 37f392f b4bbb92 37f392f b4bbb92 37f392f b4bbb92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from typing import Any, Sequence
from pathlib import Path
import json
import os
import shutil
import h5py
from huggingface_hub import snapshot_download
from omegaconf import OmegaConf
from safetensors.torch import load_file
import hydra
import torch
import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence
from transformers import T5EncoderModel, T5Tokenizer
class UniFlowAudioModel(nn.Module):
def __init__(self, model_name: str = "wsntxxn/UniFlow-Audio-large"):
assert model_name in (
"wsntxxn/UniFlow-Audio-large",
"wsntxxn/UniFlow-Audio-medium",
"wsntxxn/UniFlow-Audio-small",
)
super().__init__()
model_dir = snapshot_download(repo_id=model_name)
model_dir = Path(model_dir)
self.config = OmegaConf.load(model_dir / "config.yaml")
self.config["model"]["autoencoder"]["pretrained_ckpt"] = str(
model_dir / self.config["model"]["autoencoder"]["pretrained_ckpt"]
)
flan_t5_path = os.environ.get("FLAN_T5_PATH", "google/flan-t5-large")
try:
tokenizer = T5Tokenizer.from_pretrained(flan_t5_path)
encoder = T5EncoderModel.from_pretrained(flan_t5_path)
except Exception as e:
raise RuntimeError(
"Failed to initialize Flan-T5, please download it manually and set the `FLAN_T5_PATH`"
"environment variable to the path of the downloaded model."
) from e
self.config["model"]["content_encoder"]["text_encoder"]["model_name"
] = flan_t5_path
self.model = hydra.utils.instantiate(
self.config["model"], _convert_="all"
)
state_dict = load_file(model_dir / "model.safetensors")
self.model.load_pretrained(state_dict)
self.model.eval()
self.g2p_model_path = model_dir / "mfa_g2p" / "english_us_arpa_unhashed.zip"
if not self.g2p_model_path.exists():
ori_model_path = (model_dir / "mfa_g2p" /
"english_us_arpa.zip").resolve()
shutil.copy(ori_model_path, self.g2p_model_path)
self.tts_phone_set_path = model_dir / "mfa_g2p" / "phone_set.json"
self.tts_word2phone_dict_path = model_dir / "mfa_g2p" / "word2phone.json"
self.build_tts_phone_mapping()
self.svs_phone_set_path = model_dir / "svs" / "phone_set.json"
singers = json.load(open(model_dir / "svs" / "spk_set.json", "r"))
self.svs_singer_mapping = {
singer: i
for i, singer in enumerate(singers)
}
self.svs_pinyin2ph = model_dir / "svs" / "m4singer_pinyin2ph.txt"
self.task_to_instructions = {}
with h5py.File(model_dir / "instructions" / "t5_embeddings.h5") as hf:
for key in hf.keys():
self.task_to_instructions[key] = hf[key][()]
self.init_instruction_encoder()
def build_tts_phone_mapping(self):
with open(self.tts_phone_set_path, "r", encoding="utf-8") as f:
phone_set = json.load(f)
self.tts_phone2id = {p: i for i, p in enumerate(phone_set)}
def init_instruction_encoder(self):
flan_t5_path = os.environ.get("FLAN_T5_PATH", "google/flan-t5-large")
try:
self.instruction_tokenizer = T5Tokenizer.from_pretrained(
flan_t5_path
)
self.instruction_encoder = T5EncoderModel.from_pretrained(
flan_t5_path
)
except Exception as e:
raise RuntimeError(
"Failed to initialize Flan-T5, please download it manually and set the `FLAN_T5_PATH`"
"environment variable to the path of the downloaded model."
) from e
self.instruction_encoder.eval()
@torch.inference_mode()
def encode_instruction(self, instruction: list[str], device: torch.device):
with torch.amp.autocast(enabled=False):
tokens = self.instruction_tokenizer(
instruction,
max_length=self.instruction_tokenizer.model_max_length,
padding=True,
truncation=True,
return_tensors="pt",
)
input_ids = tokens.input_ids.to(device)
attention_mask = tokens.attention_mask.to(device)
output = self.instruction_encoder(
input_ids=input_ids, attention_mask=attention_mask
)
output = output.last_hidden_state
length = attention_mask.sum(dim=1)
return output, length
@torch.inference_mode()
def sample(
self,
content: list[Any],
task: list[str],
is_time_aligned: Sequence[bool],
instruction: list[str] | None = None,
instruction_idx: list[int] | None = None,
num_steps: int = 20,
sway_sampling_coef: float | None = -1.0,
guidance_scale: float = 3.0,
disable_progress: bool = True,
):
device = self.model.dummy_param.device
if instruction is None:
instructions = []
instruction_lengths = []
for sample_idx, task_ in enumerate(task):
if instruction_idx:
instruction_idx_ = instruction_idx[sample_idx]
else:
instruction_idx_ = 0
instruction_ = self.task_to_instructions[
f"{task_}_{instruction_idx_}"]
instructions.append(torch.as_tensor(instruction_))
instruction_lengths.append(instruction_.shape[0])
instructions = pad_sequence(instructions,
batch_first=True).to(device)
instruction_lengths = torch.as_tensor(instruction_lengths
).to(device)
else:
instructions, instruction_lengths = self.encode_instruction(
instruction, device
)
return self.model.inference(
content, task, is_time_aligned, instructions, instruction_lengths,
num_steps, sway_sampling_coef, guidance_scale, disable_progress
)
|