Spaces:
Runtime error
Runtime error
| from PIL import Image | |
| import os | |
| import numpy as np | |
| from torchvision.transforms import functional as F | |
| import torch | |
| from torchmetrics.image.fid import FrechetInceptionDistance | |
| # Paths setup | |
| generated_dataset_path = "output/tryon_results" | |
| original_dataset_path = "data/VITON-HD/test/image" # Replace with your actual original dataset path | |
| # Get generated images | |
| image_paths = sorted([os.path.join(generated_dataset_path, x) for x in os.listdir(generated_dataset_path)]) | |
| generated_images = [np.array(Image.open(path).convert("RGB")) for path in image_paths] | |
| # Get corresponding original images | |
| original_images = [] | |
| for gen_path in image_paths: | |
| # Extract the XXXXXX part from "tryon_XXXXXX.jpg" | |
| base_name = os.path.basename(gen_path) # get filename from path | |
| original_id = base_name.replace("tryon_", "") # remove "tryon_" prefix | |
| # Construct original image path | |
| original_path = os.path.join(original_dataset_path, original_id) | |
| original_images.append(np.array(Image.open(original_path).convert("RGB"))) | |
| def preprocess_image(image): | |
| image = torch.tensor(image).unsqueeze(0) | |
| image = image.permute(0, 3, 1, 2) / 255.0 | |
| return F.center_crop(image, (768, 1024)) | |
| real_images = torch.cat([preprocess_image(image) for image in original_images]) | |
| fake_images = torch.cat([preprocess_image(image) for image in generated_images]) | |
| print(real_images.shape, fake_images.shape) | |
| fid = FrechetInceptionDistance(normalize=True) | |
| fid.update(real_images, real=True) | |
| fid.update(fake_images, real=False) | |
| print(f"FID: {float(fid.compute())}") |