Update app.py
Browse files
app.py
CHANGED
|
@@ -2,24 +2,24 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 4 |
|
| 5 |
-
# Initialize the Hugging Face pipeline
|
| 6 |
-
model_name = "
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 9 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 10 |
|
| 11 |
def generate_solutions(query):
|
| 12 |
# Use the language model to generate solutions
|
| 13 |
-
|
| 14 |
|
| 15 |
# Extract the generated texts
|
| 16 |
-
solutions = [{"Solution":
|
| 17 |
|
| 18 |
# Convert solutions to a DataFrame
|
| 19 |
df = pd.DataFrame(solutions)
|
| 20 |
|
| 21 |
-
# Convert DataFrame to HTML table
|
| 22 |
-
table_html = df.to_html(escape=False, index=False)
|
| 23 |
|
| 24 |
return table_html
|
| 25 |
|
|
@@ -29,7 +29,7 @@ iface = gr.Interface(
|
|
| 29 |
inputs=gr.Textbox(lines=2, placeholder="Describe the problem with the machine..."),
|
| 30 |
outputs=gr.HTML(),
|
| 31 |
title="Oroz: Your Industry Maintenance Assistant",
|
| 32 |
-
description="Describe the problem with your machine, and get an organized table of suggested solutions."
|
| 33 |
)
|
| 34 |
|
| 35 |
iface.launch(share=True)
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 4 |
|
| 5 |
+
# Initialize the Hugging Face pipeline with GPT-4 model
|
| 6 |
+
model_name = "EleutherAI/gpt-neo-2.7B" # Change to your desired GPT-4 model
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 9 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 10 |
|
| 11 |
def generate_solutions(query):
|
| 12 |
# Use the language model to generate solutions
|
| 13 |
+
responses = generator(query, max_length=100, num_return_sequences=3)
|
| 14 |
|
| 15 |
# Extract the generated texts
|
| 16 |
+
solutions = [{"Solution": response['generated_text'].strip(), "Link": "https://example.com"} for response in responses]
|
| 17 |
|
| 18 |
# Convert solutions to a DataFrame
|
| 19 |
df = pd.DataFrame(solutions)
|
| 20 |
|
| 21 |
+
# Convert DataFrame to HTML table with clickable links
|
| 22 |
+
table_html = df.to_html(escape=False, index=False, render_links=True)
|
| 23 |
|
| 24 |
return table_html
|
| 25 |
|
|
|
|
| 29 |
inputs=gr.Textbox(lines=2, placeholder="Describe the problem with the machine..."),
|
| 30 |
outputs=gr.HTML(),
|
| 31 |
title="Oroz: Your Industry Maintenance Assistant",
|
| 32 |
+
description="Describe the problem with your machine, and get an organized table of suggested solutions with web links."
|
| 33 |
)
|
| 34 |
|
| 35 |
iface.launch(share=True)
|