--- language: - en license: mit library_name: transformers tags: - mergekit - merge - phi-4 - TensorBlock - GGUF base_model: suayptalha/Luminis-phi-4 pipeline_tag: text-generation model-index: - name: Luminis-phi-4 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 69.0 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Luminis-phi-4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 55.8 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Luminis-phi-4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 43.66 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Luminis-phi-4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 13.53 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Luminis-phi-4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 16.68 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Luminis-phi-4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.15 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Luminis-phi-4 name: Open LLM Leaderboard ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## suayptalha/Luminis-phi-4 - GGUF This repo contains GGUF format model files for [suayptalha/Luminis-phi-4](https://huggingface.co/suayptalha/Luminis-phi-4). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects
Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
🚀 Try it now! 🚀
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` <|im_start|>system<|im_sep|>{system_prompt}<|im_end|><|im_start|>user<|im_sep|>{prompt}<|im_end|><|im_start|>assistant<|im_sep|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Luminis-phi-4-Q2_K.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q2_K.gguf) | Q2_K | 5.609 GB | smallest, significant quality loss - not recommended for most purposes | | [Luminis-phi-4-Q3_K_S.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q3_K_S.gguf) | Q3_K_S | 6.505 GB | very small, high quality loss | | [Luminis-phi-4-Q3_K_M.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q3_K_M.gguf) | Q3_K_M | 7.191 GB | very small, high quality loss | | [Luminis-phi-4-Q3_K_L.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q3_K_L.gguf) | Q3_K_L | 7.789 GB | small, substantial quality loss | | [Luminis-phi-4-Q4_0.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q4_0.gguf) | Q4_0 | 8.383 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Luminis-phi-4-Q4_K_S.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q4_K_S.gguf) | Q4_K_S | 8.444 GB | small, greater quality loss | | [Luminis-phi-4-Q4_K_M.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q4_K_M.gguf) | Q4_K_M | 8.890 GB | medium, balanced quality - recommended | | [Luminis-phi-4-Q5_0.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q5_0.gguf) | Q5_0 | 10.152 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Luminis-phi-4-Q5_K_S.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q5_K_S.gguf) | Q5_K_S | 10.152 GB | large, low quality loss - recommended | | [Luminis-phi-4-Q5_K_M.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q5_K_M.gguf) | Q5_K_M | 10.413 GB | large, very low quality loss - recommended | | [Luminis-phi-4-Q6_K.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q6_K.gguf) | Q6_K | 12.030 GB | very large, extremely low quality loss | | [Luminis-phi-4-Q8_0.gguf](https://huggingface.co/tensorblock/Luminis-phi-4-GGUF/blob/main/Luminis-phi-4-Q8_0.gguf) | Q8_0 | 15.581 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Luminis-phi-4-GGUF --include "Luminis-phi-4-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Luminis-phi-4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```