YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Terminal Agent - Multi-Task NAT v13
Model Description
This model is fine-tuned from Qwen3-8B on multi-task terminal agent trajectories using Negative-Aware Training (NAT).
Key Features
- 5 Tasks: fix-git, cancel-async-tasks, log-summary-date-ranges, regex-log, pypi-server
- Fixed Tool Signatures: Corrected critical bug where
note_namewas incorrectly removed - Clean Tool Calls: Removed hallucinated parameters (message_title, message_description, message_attachment)
- Negative Examples: Includes looping and wrong_command negative examples
Training Details
- Base Model: Qwen/Qwen3-8B
- Training Data: 40 samples (20 positive, 20 negative)
- Epochs: 300
- Learning Rate: 5e-5
- Batch Size: 4
Tool Signatures (Corrected)
shell_exec(id, command, block)shell_write_content_to_file(content, file_path)create_note(note_name, content)append_note(note_name, content)read_note(note_name)
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("camel-ai/terminal_agent_multitask_nat_v13")
tokenizer = AutoTokenizer.from_pretrained("camel-ai/terminal_agent_multitask_nat_v13")
V13 Fixes
- KEEP note_name - Required by runtime (was incorrectly removed in v12)
- System prompt uses note_name - Matches runtime expectations
- Remove only hallucinated params - message_title, message_description, message_attachment
- Added tool call validation - Catches signature issues before training
Evaluation Results
Expected to achieve >80% success rate on 5 tasks when evaluated with matching task set.
License
MIT License
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support