MauroVazquez's picture
Create README.md
ad860ad verified
metadata
license: cc-by-nc-4.0
language: ca
tags:
  - audio
  - automatic-speech-recognition
  - whisper-large-v3
  - projecte-aina
  - barcelona-supercomputing-center
model-index:
  - name: CLiC-UB/faster-whisper-large-v3-ca-rapnic-paralysis-full
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Rapnic (Test)
          type: CLiC-UB/rapnic-example
          split: test
          args:
            language: ca
        metrics:
          - name: WER
            type: wer
            value: 27.49
base_model:
  - BSC-LT/whisper-large-v3-ca-punctuated-3370h
pipeline_tag: automatic-speech-recognition
library_name: transformers

faster-whisper-large-v3-ca-rapnic-paralysis-full

Table of Contents

Click to expand

Model Description

Faster Whisper conversion of CLiC-UB/whisper-large-v3-ca-rapnic-paralysis-full

How to Get Started with the Model

Installation

To use this model, you may install faster-whisper

Create a virtual environment:

python -m venv /path/to/venv

Activate the environment:

source /path/to/venv/bin/activate

Install the modules:

pip install faster-whisper

For Inference

To transcribe audio in Catalan using this model, you can follow this example:

from faster_whisper import WhisperModel

model_size = "CLiC-UB/faster-whisper-large-v3-ca-rapnic-paralysis-full"

# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")

# or run on GPU with INT8
#model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")

segments, info = model.transcribe("audio_in_catalan.mp3", beam_size=5, task="transcribe",language="ca")

print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

Conversion Details

Conversion procedure

This model is not a direct result of training. It is a conversion of a Whisper model using faster-whisper. The procedure to create the model is as follows:

ct2-transformers-converter --model CLiC-UB/whisper-large-v3-ca-rapnic-paralysis-full
   --output_dir faster-whisper-large-v3-ca-rapnic-paralysis-full
   --copy_files preprocessor_config.json tokenizer.json

Additional Information

Contact

For further information, please send an email to gr.clic@ub.edu.

License

CC BY-NC 4.0