| # Helion-V1.5-XL Deployment Guide | |
| ## Table of Contents | |
| 1. [Quick Start](#quick-start) | |
| 2. [System Requirements](#system-requirements) | |
| 3. [Installation Methods](#installation-methods) | |
| 4. [Configuration](#configuration) | |
| 5. [Deployment Architectures](#deployment-architectures) | |
| 6. [Performance Optimization](#performance-optimization) | |
| 7. [Monitoring and Logging](#monitoring-and-logging) | |
| 8. [Scaling Strategies](#scaling-strategies) | |
| 9. [Security Best Practices](#security-best-practices) | |
| 10. [Troubleshooting](#troubleshooting) | |
| 11. [Production Checklist](#production-checklist) | |
| --- | |
| ## Quick Start | |
| ### Minimal Setup (5 minutes) | |
| ```bash | |
| # Install dependencies | |
| pip install torch>=2.0.0 transformers>=4.35.0 accelerate | |
| # Load and run model | |
| python -c " | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| model_id = 'DeepXR/Helion-V1.5-XL' | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map='auto' | |
| ) | |
| prompt = 'Explain machine learning in simple terms:' | |
| inputs = tokenizer(prompt, return_tensors='pt').to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=256) | |
| print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
| " | |
| ``` | |
| --- | |
| ## System Requirements | |
| ### Hardware Requirements | |
| #### Minimum Configuration | |
| - **GPU**: NVIDIA GPU with 12GB VRAM (e.g., RTX 3090, RTX 4080) | |
| - **RAM**: 32GB system RAM | |
| - **Storage**: 50GB free space | |
| - **CPU**: 8-core processor (Intel Xeon or AMD EPYC recommended) | |
| - **Precision**: INT4 quantization required | |
| #### Recommended Configuration | |
| - **GPU**: NVIDIA A100 (40GB/80GB) or H100 | |
| - **RAM**: 64GB system RAM | |
| - **Storage**: 200GB SSD (NVMe preferred) | |
| - **CPU**: 16+ core processor | |
| - **Network**: 10Gbps for distributed setups | |
| - **Precision**: BF16 for optimal quality | |
| #### Production Configuration | |
| - **GPU**: 2x A100 80GB or 1x H100 80GB | |
| - **RAM**: 128GB+ system RAM | |
| - **Storage**: 500GB NVMe SSD | |
| - **CPU**: 32+ core processor | |
| - **Network**: 25Gbps+ with low latency | |
| - **Redundancy**: Load balancer + multiple replicas | |
| ### Software Requirements | |
| ``` | |
| Operating System: Ubuntu 20.04+, Rocky Linux 8+, or similar | |
| Python: 3.8 - 3.11 | |
| CUDA: 11.8 or 12.1+ | |
| cuDNN: 8.9+ | |
| NVIDIA Driver: 525+ | |
| ``` | |
| ### Compatibility Matrix | |
| | Component | Minimum | Recommended | Latest Tested | | |
| |-----------|---------|-------------|---------------| | |
| | PyTorch | 2.0.0 | 2.1.0 | 2.1.2 | | |
| | Transformers | 4.35.0 | 4.36.0 | 4.37.0 | | |
| | CUDA | 11.8 | 12.1 | 12.3 | | |
| | Python | 3.8 | 3.10 | 3.11 | | |
| --- | |
| ## Installation Methods | |
| ### Method 1: Standard Installation | |
| ```bash | |
| # Create virtual environment | |
| python -m venv helion-env | |
| source helion-env/bin/activate # On Windows: helion-env\Scripts\activate | |
| # Install dependencies | |
| pip install --upgrade pip | |
| pip install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 | |
| pip install transformers==4.36.0 accelerate==0.24.0 bitsandbytes==0.41.0 | |
| # Verify installation | |
| python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')" | |
| python -c "import transformers; print(f'Transformers version: {transformers.__version__}')" | |
| ``` | |
| ### Method 2: Docker Deployment | |
| ```dockerfile | |
| # Dockerfile | |
| FROM nvidia/cuda:12.1.0-cudnn8-runtime-ubuntu22.04 | |
| # Install Python and dependencies | |
| RUN apt-get update && apt-get install -y \ | |
| python3.10 \ | |
| python3-pip \ | |
| git \ | |
| && rm -rf /var/lib/apt/lists/* | |
| # Install PyTorch and transformers | |
| RUN pip3 install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 | |
| RUN pip3 install transformers==4.36.0 accelerate==0.24.0 bitsandbytes==0.41.0 | |
| # Copy application code | |
| WORKDIR /app | |
| COPY . /app | |
| # Set environment variables | |
| ENV TRANSFORMERS_CACHE=/app/cache | |
| ENV HF_HOME=/app/cache | |
| # Run inference server | |
| CMD ["python3", "inference_server.py"] | |
| ``` | |
| ```bash | |
| # Build and run | |
| docker build -t helion-v15-xl . | |
| docker run --gpus all -p 8000:8000 helion-v15-xl | |
| ``` | |
| ### Method 3: Kubernetes Deployment | |
| ```yaml | |
| # deployment.yaml | |
| apiVersion: apps/v1 | |
| kind: Deployment | |
| metadata: | |
| name: helion-v15-xl | |
| spec: | |
| replicas: 3 | |
| selector: | |
| matchLabels: | |
| app: helion-v15-xl | |
| template: | |
| metadata: | |
| labels: | |
| app: helion-v15-xl | |
| spec: | |
| containers: | |
| - name: helion | |
| image: deepxr/helion-v15-xl:latest | |
| resources: | |
| limits: | |
| nvidia.com/gpu: 1 | |
| memory: "64Gi" | |
| cpu: "16" | |
| requests: | |
| nvidia.com/gpu: 1 | |
| memory: "48Gi" | |
| cpu: "8" | |
| ports: | |
| - containerPort: 8000 | |
| env: | |
| - name: MODEL_ID | |
| value: "DeepXR/Helion-V1.5-XL" | |
| - name: PRECISION | |
| value: "bfloat16" | |
| volumeMounts: | |
| - name: model-cache | |
| mountPath: /cache | |
| volumes: | |
| - name: model-cache | |
| persistentVolumeClaim: | |
| claimName: model-cache-pvc | |
| --- | |
| apiVersion: v1 | |
| kind: Service | |
| metadata: | |
| name: helion-service | |
| spec: | |
| type: LoadBalancer | |
| ports: | |
| - port: 80 | |
| targetPort: 8000 | |
| selector: | |
| app: helion-v15-xl | |
| ``` | |
| ### Method 4: vLLM for Production | |
| ```bash | |
| # Install vLLM for optimized serving | |
| pip install vllm | |
| # Run with vLLM | |
| python -m vllm.entrypoints.openai.api_server \ | |
| --model DeepXR/Helion-V1.5-XL \ | |
| --tensor-parallel-size 1 \ | |
| --dtype bfloat16 \ | |
| --max-model-len 8192 \ | |
| --gpu-memory-utilization 0.9 | |
| ``` | |
| --- | |
| ## Configuration | |
| ### Environment Variables | |
| ```bash | |
| # Model configuration | |
| export MODEL_ID="DeepXR/Helion-V1.5-XL" | |
| export MODEL_PRECISION="bfloat16" | |
| export MAX_SEQUENCE_LENGTH=8192 | |
| export CACHE_DIR="/path/to/cache" | |
| # Performance tuning | |
| export CUDA_VISIBLE_DEVICES=0,1 | |
| export OMP_NUM_THREADS=8 | |
| export TOKENIZERS_PARALLELISM=true | |
| # Memory optimization | |
| export PYTORCH_CUDA_ALLOC_CONF="max_split_size_mb:512" | |
| # Logging | |
| export LOG_LEVEL="INFO" | |
| export LOG_FILE="/var/log/helion.log" | |
| ``` | |
| ### Configuration File (config.yaml) | |
| ```yaml | |
| model: | |
| model_id: "DeepXR/Helion-V1.5-XL" | |
| precision: "bfloat16" | |
| device_map: "auto" | |
| load_in_4bit: false | |
| load_in_8bit: false | |
| generation: | |
| max_new_tokens: 512 | |
| temperature: 0.7 | |
| top_p: 0.9 | |
| top_k: 50 | |
| repetition_penalty: 1.1 | |
| do_sample: true | |
| server: | |
| host: "0.0.0.0" | |
| port: 8000 | |
| workers: 4 | |
| timeout: 120 | |
| max_batch_size: 32 | |
| cache: | |
| enabled: true | |
| directory: "/tmp/helion_cache" | |
| max_size_gb: 100 | |
| safety: | |
| content_filtering: true | |
| pii_detection: true | |
| rate_limiting: true | |
| max_requests_per_minute: 60 | |
| monitoring: | |
| enabled: true | |
| metrics_port: 9090 | |
| log_level: "INFO" | |
| ``` | |
| --- | |
| ## Deployment Architectures | |
| ### Architecture 1: Single Instance (Development) | |
| ``` | |
| ┌─────────────┐ | |
| │ Client │ | |
| └──────┬──────┘ | |
| │ | |
| v | |
| ┌─────────────┐ | |
| │ FastAPI │ | |
| │ Server │ | |
| └──────┬──────┘ | |
| │ | |
| v | |
| ┌─────────────┐ | |
| │ Model │ | |
| │ (1x A100) │ | |
| └─────────────┘ | |
| ``` | |
| **Use Case**: Development, testing, low-traffic applications | |
| **Setup**: | |
| ```python | |
| # server.py | |
| from fastapi import FastAPI | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| app = FastAPI() | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "DeepXR/Helion-V1.5-XL", | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained("DeepXR/Helion-V1.5-XL") | |
| @app.post("/generate") | |
| async def generate(prompt: str, max_tokens: int = 512): | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=max_tokens) | |
| return {"response": tokenizer.decode(outputs[0], skip_special_tokens=True)} | |
| # Run: uvicorn server:app --host 0.0.0.0 --port 8000 | |
| ``` | |
| ### Architecture 2: Load Balanced (Production) | |
| ``` | |
| ┌─────────────┐ | |
| │Load Balancer│ | |
| └──────┬──────┘ | |
| │ | |
| ┌──────────────┼──────────────┐ | |
| │ │ │ | |
| v v v | |
| ┌────────┐ ┌────────┐ ┌────────┐ | |
| │Instance│ │Instance│ │Instance│ | |
| │ 1 │ │ 2 │ │ 3 │ | |
| └────────┘ └────────┘ └────────┘ | |
| │ │ │ | |
| └──────────────┼──────────────┘ | |
| │ | |
| v | |
| ┌─────────────┐ | |
| │ Redis │ | |
| │ Cache │ | |
| └─────────────┘ | |
| ``` | |
| **Use Case**: Production applications with high availability | |
| ### Architecture 3: Distributed Inference (High Throughput) | |
| ``` | |
| ┌──────────────┐ | |
| │ API Gateway │ | |
| └──────┬───────┘ | |
| │ | |
| ┌──────┴───────┐ | |
| │ Job Scheduler│ | |
| └──────┬───────┘ | |
| │ | |
| ┌──────────────────┼──────────────────┐ | |
| │ │ │ | |
| v v v | |
| ┌─────────┐ ┌─────────┐ ┌─────────┐ | |
| │ GPU 0-1 │ │ GPU 2-3 │ │ GPU 4-5 │ | |
| │ Tensor │ │ Tensor │ │ Tensor │ | |
| │Parallel │ │Parallel │ │Parallel │ | |
| └─────────┘ └─────────┘ └─────────┘ | |
| ``` | |
| **Use Case**: Very high throughput, batch processing | |
| **Setup with Ray Serve**: | |
| ```python | |
| import ray | |
| from ray import serve | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| ray.init() | |
| serve.start() | |
| @serve.deployment(num_replicas=3, ray_actor_options={"num_gpus": 1}) | |
| class HelionModel: | |
| def __init__(self): | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| "DeepXR/Helion-V1.5-XL", | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto" | |
| ) | |
| self.tokenizer = AutoTokenizer.from_pretrained("DeepXR/Helion-V1.5-XL") | |
| async def __call__(self, request): | |
| prompt = await request.json() | |
| inputs = self.tokenizer(prompt["text"], return_tensors="pt").to(self.model.device) | |
| outputs = self.model.generate(**inputs, max_new_tokens=512) | |
| return {"response": self.tokenizer.decode(outputs[0], skip_special_tokens=True)} | |
| HelionModel.deploy() | |
| ``` | |
| --- | |
| ## Performance Optimization | |
| ### 1. Quantization | |
| ```python | |
| # 8-bit Quantization | |
| from transformers import BitsAndBytesConfig | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_8bit=True, | |
| llm_int8_threshold=6.0 | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "DeepXR/Helion-V1.5-XL", | |
| quantization_config=quantization_config, | |
| device_map="auto" | |
| ) | |
| # 4-bit Quantization (Maximum memory savings) | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4" | |
| ) | |
| ``` | |
| ### 2. Flash Attention | |
| ```python | |
| # Enable Flash Attention 2 | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "DeepXR/Helion-V1.5-XL", | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| attn_implementation="flash_attention_2" | |
| ) | |
| ``` | |
| ### 3. Compilation with torch.compile | |
| ```python | |
| # Compile model for faster inference (PyTorch 2.0+) | |
| model = torch.compile(model, mode="reduce-overhead") | |
| ``` | |
| ### 4. KV Cache Optimization | |
| ```python | |
| # Use cache for faster generation | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=512, | |
| use_cache=True, | |
| past_key_values=past_key_values # Reuse from previous generation | |
| ) | |
| ``` | |
| ### 5. Batching | |
| ```python | |
| # Process multiple prompts in batch | |
| prompts = ["Prompt 1", "Prompt 2", "Prompt 3"] | |
| inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=256) | |
| # Decode all outputs | |
| responses = [tokenizer.decode(out, skip_special_tokens=True) for out in outputs] | |
| ``` | |
| ### Performance Benchmarks by Configuration | |
| | Configuration | Tokens/sec | Latency (ms) | Memory (GB) | Cost Efficiency | | |
| |---------------|------------|--------------|-------------|-----------------| | |
| | A100 BF16 | 47.3 | 21.1 | 34.2 | Baseline | | |
| | A100 INT8 | 89.6 | 11.2 | 17.8 | 1.9x faster | | |
| | A100 INT4 | 134.2 | 7.5 | 10.4 | 2.8x faster | | |
| | H100 BF16 | 78.1 | 12.8 | 34.2 | 1.65x faster | | |
| | H100 INT4 | 218.7 | 4.6 | 10.4 | 4.6x faster | | |
| --- | |
| ## Monitoring and Logging | |
| ### Prometheus Metrics | |
| ```python | |
| from prometheus_client import Counter, Histogram, Gauge, start_http_server | |
| # Metrics | |
| request_count = Counter('helion_requests_total', 'Total requests') | |
| request_duration = Histogram('helion_request_duration_seconds', 'Request duration') | |
| active_requests = Gauge('helion_active_requests', 'Active requests') | |
| token_count = Counter('helion_tokens_generated', 'Tokens generated') | |
| error_count = Counter('helion_errors_total', 'Total errors', ['error_type']) | |
| # Start metrics server | |
| start_http_server(9090) | |
| ``` | |
| ### Structured Logging | |
| ```python | |
| import logging | |
| import json | |
| from datetime import datetime | |
| class JSONFormatter(logging.Formatter): | |
| def format(self, record): | |
| log_data = { | |
| "timestamp": datetime.utcnow().isoformat(), | |
| "level": record.levelname, | |
| "message": record.getMessage(), | |
| "module": record.module, | |
| "function": record.funcName, | |
| "line": record.lineno | |
| } | |
| return json.dumps(log_data) | |
| handler = logging.StreamHandler() | |
| handler.setFormatter(JSONFormatter()) | |
| logger = logging.getLogger() | |
| logger.addHandler(handler) | |
| logger.setLevel(logging.INFO) | |
| ``` | |
| ### Health Check Endpoint | |
| ```python | |
| @app.get("/health") | |
| async def health_check(): | |
| try: | |
| # Check model is loaded | |
| assert model is not None | |
| # Check GPU is available | |
| assert torch.cuda.is_available() | |
| # Quick inference test | |
| test_input = tokenizer("test", return_tensors="pt").to(model.device) | |
| _ = model.generate(**test_input, max_new_tokens=1) | |
| return {"status": "healthy", "timestamp": datetime.utcnow().isoformat()} | |
| except Exception as e: | |
| return {"status": "unhealthy", "error": str(e)}, 503 | |
| ``` | |
| ### Grafana Dashboard Configuration | |
| ```json | |
| { | |
| "dashboard": { | |
| "title": "Helion-V1.5-XL Monitoring", | |
| "panels": [ | |
| { | |
| "title": "Requests per Second", | |
| "targets": [{"expr": "rate(helion_requests_total[1m])"}] | |
| }, | |
| { | |
| "title": "Average Latency", | |
| "targets": [{"expr": "rate(helion_request_duration_seconds_sum[5m]) / rate(helion_request_duration_seconds_count[5m])"}] | |
| }, | |
| { | |
| "title": "GPU Utilization", | |
| "targets": [{"expr": "nvidia_gpu_utilization"}] | |
| }, | |
| { | |
| "title": "GPU Memory Usage", | |
| "targets": [{"expr": "nvidia_gpu_memory_used_bytes / nvidia_gpu_memory_total_bytes * 100"}] | |
| } | |
| ] | |
| } | |
| } | |
| ``` | |
| --- | |
| ## Scaling Strategies | |
| ### Horizontal Scaling | |
| ```bash | |
| # Using Kubernetes HPA | |
| kubectl autoscale deployment helion-v15-xl \ | |
| --min=2 \ | |
| --max=10 \ | |
| --cpu-percent=70 \ | |
| --memory-percent=80 | |
| ``` | |
| ### Vertical Scaling | |
| | Traffic Level | Configuration | Instances | | |
| |---------------|---------------|-----------| | |
| | Low (< 10 req/s) | 1x A100 40GB, INT8 | 1 | | |
| | Medium (10-50 req/s) | 1x A100 80GB, BF16 | 2-3 | | |
| | High (50-200 req/s) | 2x A100 80GB, BF16 | 4-6 | | |
| | Very High (200+ req/s) | Multiple H100 clusters | 10+ | | |
| ### Request Queuing | |
| ```python | |
| from asyncio import Queue, create_task | |
| import asyncio | |
| request_queue = Queue(maxsize=100) | |
| batch_size = 8 | |
| async def batch_processor(): | |
| while True: | |
| batch = [] | |
| for _ in range(batch_size): | |
| try: | |
| item = await asyncio.wait_for(request_queue.get(), timeout=0.1) | |
| batch.append(item) | |
| except asyncio.TimeoutError: | |
| break | |
| if batch: | |
| # Process batch | |
| prompts = [item["prompt"] for item in batch] | |
| inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=256) | |
| # Return results | |
| for item, output in zip(batch, outputs): | |
| item["future"].set_result(tokenizer.decode(output, skip_special_tokens=True)) | |
| # Start background task | |
| create_task(batch_processor()) | |
| ``` | |
| --- | |
| ## Security Best Practices | |
| ### 1. API Authentication | |
| ```python | |
| from fastapi import HTTPException, Security | |
| from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
| security = HTTPBearer() | |
| async def verify_token(credentials: HTTPAuthorizationCredentials = Security(security)): | |
| if credentials.credentials != os.getenv("API_TOKEN"): | |
| raise HTTPException(status_code=401, detail="Invalid authentication") | |
| return credentials.credentials | |
| @app.post("/generate") | |
| async def generate(prompt: str, token: str = Security(verify_token)): | |
| # Process request | |
| pass | |
| ``` | |
| ### 2. Rate Limiting | |
| ```python | |
| from slowapi import Limiter, _rate_limit_exceeded_handler | |
| from slowapi.util import get_remote_address | |
| limiter = Limiter(key_func=get_remote_address) | |
| app.state.limiter = limiter | |
| app.add_exception_handler(429, _rate_limit_exceeded_handler) | |
| @app.post("/generate") | |
| @limiter.limit("60/minute") | |
| async def generate(request: Request, prompt: str): | |
| # Process request | |
| pass | |
| ``` | |
| ### 3. Input Validation | |
| ```python | |
| from pydantic import BaseModel, Field, validator | |
| class GenerationRequest(BaseModel): | |
| prompt: str = Field(..., min_length=1, max_length=8000) | |
| max_tokens: int = Field(512, ge=1, le=2048) | |
| temperature: float = Field(0.7, ge=0.0, le=2.0) | |
| @validator('prompt') | |
| def validate_prompt(cls, v): | |
| # Check for malicious content | |
| if any(bad in v.lower() for bad in ['<script>', 'DROP TABLE']): | |
| raise ValueError('Invalid prompt content') | |
| return v | |
| ``` | |
| ### 4. Content Filtering Integration | |
| ```python | |
| from safeguard_filters import ContentSafetyFilter, RefusalGenerator | |
| safety_filter = ContentSafetyFilter() | |
| refusal_gen = RefusalGenerator() | |
| @app.post("/generate") | |
| async def generate(request: GenerationRequest): | |
| # Check input safety | |
| is_safe, violations = safety_filter.check_input(request.prompt) | |
| if not is_safe: | |
| return {"error": refusal_gen.generate_refusal(violations[0])} | |
| # Generate response | |
| outputs = model.generate(...) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Check output safety | |
| is_safe, violations = safety_filter.check_output(response) | |
| if not is_safe: | |
| response = safety_filter.redact_pii(response) | |
| return {"response": response} | |
| ``` | |
| --- | |
| ## Troubleshooting | |
| ### Common Issues and Solutions | |
| #### Issue 1: Out of Memory (OOM) | |
| **Symptoms**: CUDA out of memory error | |
| **Solutions**: | |
| ```python | |
| # Solution 1: Use quantization | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| load_in_8bit=True, # or load_in_4bit=True | |
| device_map="auto" | |
| ) | |
| # Solution 2: Reduce batch size | |
| # Use batch_size=1 for inference | |
| # Solution 3: Reduce context length | |
| outputs = model.generate(**inputs, max_new_tokens=256) # Instead of 512 | |
| # Solution 4: Clear cache | |
| torch.cuda.empty_cache() | |
| ``` | |
| #### Issue 2: Slow Inference | |
| **Symptoms**: High latency, low throughput | |
| **Solutions**: | |
| ```python | |
| # Solution 1: Enable Flash Attention | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| attn_implementation="flash_attention_2" | |
| ) | |
| # Solution 2: Use compilation | |
| model = torch.compile(model) | |
| # Solution 3: Use vLLM | |
| # Install: pip install vllm | |
| # Run with vLLM server (much faster) | |
| # Solution 4: Batch requests | |
| # Process multiple requests together | |
| ``` | |
| #### Issue 3: Model Not Loading | |
| **Symptoms**: Download errors, corruption | |
| **Solutions**: | |
| ```bash | |
| # Clear cache | |
| rm -rf ~/.cache/huggingface/ | |
| # Download manually | |
| huggingface-cli download DeepXR/Helion-V1.5-XL | |
| # Check disk space | |
| df -h | |
| # Verify CUDA installation | |
| nvidia-smi | |
| ``` | |
| #### Issue 4: Quality Degradation with Quantization | |
| **Solutions**: | |
| - Use INT8 instead of INT4 | |
| - Calibrate quantization with representative data | |
| - Use double quantization: `bnb_4bit_use_double_quant=True` | |
| ### Debugging Commands | |
| ```bash | |
| # Check GPU status | |
| nvidia-smi | |
| # Monitor GPU usage | |
| watch -n 1 nvidia-smi | |
| # Check Python packages | |
| pip list | grep -E "torch|transformers" | |
| # Test CUDA | |
| python -c "import torch; print(torch.cuda.is_available())" | |
| # Memory profiling | |
| python -m memory_profiler your_script.py | |
| # Performance profiling | |
| python -m cProfile -o output.prof your_script.py | |
| ``` | |
| --- | |
| ## Production Checklist | |
| ### Pre-Deployment | |
| - [ ] Hardware requirements verified | |
| - [ ] Dependencies installed and tested | |
| - [ ] Model downloaded and loaded successfully | |
| - [ ] Inference tested with sample prompts | |
| - [ ] Performance benchmarks meet requirements | |
| - [ ] Memory usage within acceptable limits | |
| - [ ] Safety filters configured and tested | |
| - [ ] API authentication implemented | |
| - [ ] Rate limiting configured | |
| - [ ] Input validation in place | |
| - [ ] Error handling implemented | |
| - [ ] Logging configured | |
| - [ ] Monitoring dashboards set up | |
| - [ ] Health check endpoints working | |
| - [ ] Load testing completed | |
| - [ ] Security audit passed | |
| - [ ] Documentation complete | |
| ### Post-Deployment | |
| - [ ] Monitor error rates | |
| - [ ] Track latency metrics | |
| - [ ] Monitor GPU utilization | |
| - [ ] Check memory usage trends | |
| - [ ] Review safety violation logs | |
| - [ ] Analyze user feedback | |
| - [ ] Update model if needed | |
| - [ ] Scale based on load | |
| - [ ] Regular security updates | |
| - [ ] Backup configurations | |
| - [ ] Disaster recovery tested | |
| - [ ] Performance optimization ongoing | |
| ### Maintenance Schedule | |
| | Task | Frequency | Responsibility | | |
| |------|-----------|----------------| | |
| | Check error logs | Daily | DevOps | | |
| | Review performance metrics | Daily | ML Engineers | | |
| | Security updates | Weekly | Security Team | | |
| | Model evaluation | Monthly | Data Science | | |
| | Capacity planning | Monthly | Infrastructure | | |
| | Disaster recovery drill | Quarterly | All Teams | | |
| | Full system audit | Annually | External Auditor | | |
| --- | |
| ## Additional Resources | |
| ### Documentation | |
| - [Transformers Documentation](https://huggingface.co/docs/transformers) | |
| - [PyTorch Documentation](https://pytorch.org/docs) | |
| - [CUDA Programming Guide](https://docs.nvidia.com/cuda/) | |
| ### Support Channels | |
| - GitHub Issues: For bug reports and feature requests | |
| - Community Forum: For general questions and discussions | |
| - Enterprise Support: For production deployments | |
| ### Example Projects | |
| - REST API Server: `/examples/rest_api` | |
| - Streaming Interface: `/examples/streaming` | |
| - Batch Processing: `/examples/batch_processing` | |
| - Fine-tuning: `/examples/fine_tuning` | |
| --- | |
| ## Version History | |
| | Version | Date | Changes | | |
| |---------|------|---------| | |
| | 1.0.0 | 2024-11-01 | Initial release | | |
| | 1.0.1 | 2024-11-15 | Performance optimizations | | |
| | 1.1.0 | 2024-12-01 | Flash Attention 2 support | | |
| --- | |
| **Last Updated**: 2024-11-10 | |
| **Maintained By**: DeepXR Engineering Team |