results

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4656
  • Accuracy: 0.8125
  • F1: 0.8141

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 17 0.8876 0.5865 0.5688
No log 2.0 34 0.8620 0.6090 0.6067
No log 3.0 51 0.7611 0.6842 0.6783
No log 4.0 68 0.6987 0.6842 0.6741
No log 5.0 85 0.6540 0.6917 0.6872
No log 6.0 102 0.7933 0.6767 0.6407
No log 7.0 119 0.4766 0.8195 0.8152
No log 8.0 136 0.4624 0.8271 0.8231
No log 9.0 153 0.4528 0.8271 0.8277
No log 10.0 170 0.4641 0.8120 0.8087
No log 11.0 187 0.6063 0.7368 0.7231
No log 12.0 204 0.4783 0.7594 0.7596
No log 13.0 221 0.4987 0.7970 0.7990
No log 14.0 238 0.6023 0.7669 0.7603
No log 15.0 255 0.4588 0.8271 0.8254
No log 16.0 272 0.4362 0.8120 0.8130
No log 17.0 289 0.5342 0.8271 0.8280
No log 18.0 306 0.5012 0.8120 0.8124
No log 19.0 323 0.4891 0.8496 0.8498
No log 20.0 340 0.8525 0.7744 0.7714
No log 21.0 357 0.5291 0.8195 0.8209
No log 22.0 374 0.5355 0.8271 0.8264
No log 23.0 391 0.6323 0.8045 0.8041
No log 24.0 408 0.6973 0.8346 0.8334
No log 25.0 425 0.6705 0.8571 0.8569
No log 26.0 442 0.6056 0.8571 0.8572
No log 27.0 459 0.7864 0.8421 0.8421
No log 28.0 476 0.7067 0.8346 0.8351
No log 29.0 493 0.6695 0.8571 0.8567
0.3504 30.0 510 0.6680 0.8647 0.8646

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for KiViDrag/results

Finetuned
(936)
this model

Evaluation results