File size: 8,193 Bytes
348bcce 128be27 348bcce 128be27 348bcce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import sentencepiece as spm
import requests
import os
TOKENIZER_PATH = "ko_unigram.model"
DATA_PATH = "corpus.txt" # 36M ๋ฌธ์ฅ ํ
์คํธ ํ์ผ
max_len = 128
# ===============================
# 1๏ธโฃ ํ์ผ ๋ค์ด๋ก๋
# ===============================
def download_file(url, save_path):
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
f.write(chunk)
print(f"โ
{save_path} ์ ์ฅ๋จ")
if not os.path.exists(TOKENIZER_PATH):
download_file(
"https://huggingface.co/Yuchan5386/inlam-100m/resolve/main/ko_unigram.model?download=true",
TOKENIZER_PATH
)
if not os.path.exists(DATA_PATH):
download_file(
"https://huggingface.co/datasets/Yuchan5386/1/resolve/main/shuffled_corpus.txt?download=true",
DATA_PATH
)
# ===============================
# SentencePiece
# ===============================
sp = spm.SentencePieceProcessor("ko_unigram.model")
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
start_id = sp.piece_to_id("<start>")
end_id = sp.piece_to_id("<end>")
vocab_size = sp.get_piece_size()
max_len = 512
batch_size = 32
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
# ===============================
# Dataset
# ===============================
class TextDataset(Dataset):
def __init__(self, file_path, num_lines=None):
self.lines = []
with open(file_path, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
if num_lines is not None and i >= num_lines:
break
line = line.strip()
if line:
self.lines.append(line)
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
text = self.lines[idx]
ids = text_to_ids(text)[:max_len-1]
full_input = ids + [end_id]
pad_len = max_len - len(full_input)
full_input += [pad_id]*pad_len
target = full_input[1:] + [pad_id]
return torch.tensor(full_input, dtype=torch.long), torch.tensor(target, dtype=torch.long)
dataset = TextDataset("corpus.txt", num_lines=100000)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# ===============================
# ๋ชจ๋ธ ์ ์
# ===============================
class SwiGLU(nn.Module):
def __init__(self, d_model):
super().__init__()
self.W = nn.Linear(d_model, 3500)
self.W1 = nn.Linear(1750, d_model)
def forward(self, x):
x = self.W(x.float())
a,b = x.chunk(2, dim=-1)
return self.W1(F.silu(a)*b).to(x.dtype)
class SparseCausalAttention(nn.Module):
def __init__(self, num_heads, head_dim, window_size=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.window_size = window_size
self.q = nn.Linear(head_dim*num_heads, num_heads*head_dim)
self.k = nn.Linear(head_dim*num_heads, num_heads*head_dim)
self.v = nn.Linear(head_dim*num_heads, num_heads*head_dim)
self.out = nn.Linear(num_heads*head_dim, head_dim*num_heads)
def forward(self, x):
B,L,D = x.shape
q = self.q(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
k = self.k(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
v = self.v(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
q = q / (self.head_dim ** 0.5)
attn_scores = torch.matmul(q, k.transpose(-2,-1))
mask = torch.tril(torch.ones(L,L, device=x.device))
band_mask = torch.triu(mask, -self.window_size)
attn_scores = attn_scores.masked_fill(band_mask==0, float('-inf'))
attn_probs = F.softmax(attn_scores, dim=-1)
out = torch.matmul(attn_probs, v)
out = out.transpose(1,2).reshape(B,L,D)
return self.out(out)
class Lo(nn.Module):
def __init__(self,d_model):
super().__init__()
self.d = nn.Linear(d_model,64)
self.w = nn.Linear(64,d_model)
self.norm = nn.LayerNorm(d_model)
def forward(self,x):
return self.norm(self.w(F.silu(self.d(x))) + x)
class Block(nn.Module):
def __init__(self,d_model):
super().__init__()
self.attn = SparseCausalAttention(num_heads=2, head_dim=64)
self.glu = SwiGLU(d_model)
self.norm = nn.LayerNorm(d_model)
self.lo = Lo(d_model)
def forward(self,x):
x = self.attn(x)
x = self.norm(self.glu(x)+x)
x = self.lo(x)
return x
class ReLM(nn.Module):
def __init__(self,vocab_size,max_seq_len,d_model,n_layers):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size,d_model)
self.pos_embedding = nn.Embedding(max_seq_len,d_model)
self.blocks = nn.ModuleList([Block(d_model) for _ in range(n_layers)])
self.ln_f = nn.LayerNorm(d_model)
self.d_model = d_model
def forward(self,x):
B,L = x.shape
positions = torch.arange(L,device=x.device).unsqueeze(0)
x = self.token_embedding(x) + self.pos_embedding(positions)
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
logits = x @ self.token_embedding.weight.T
return logits
# ===============================
# ํ์ต
# ===============================
model = ReLM(vocab_size, max_len, 128, 2).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
loss_fn = nn.CrossEntropyLoss(ignore_index=pad_id)
epochs = 1
for epoch in range(epochs):
model.train()
total_loss = 0
for step,(x,y) in enumerate(dataloader):
x,y = x.to(device), y.to(device)
optimizer.zero_grad()
logits = model(x)
loss = loss_fn(logits.view(-1,vocab_size), y.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),1.0)
optimizer.step()
total_loss += loss.item()
if step % 100 == 0:
print(f"Epoch {epoch+1}, Step {step}, Loss: {loss.item():.4f}")
scheduler.step()
print(f"Epoch {epoch+1} ์๋ฃ, ํ๊ท Loss: {total_loss/len(dataloader):.4f}")
torch.save(model.state_dict(), "relm_model.pth")
print("๋ชจ๋ธ ์ ์ฅ ์๋ฃ!")
# ===============================
# Top-p ์ํ๋ง ์์ฑ
# ===============================
def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.6, min_len=20):
model.eval()
model_input = text_to_ids(f"<start> {prompt}")
model_input = model_input[:max_len]
generated = list(model_input)
with torch.no_grad():
for step in range(max_gen):
input_seq = generated[-max_len:] if len(generated)>max_len else generated
input_tensor = torch.tensor([input_seq + [pad_id]*(max_len-len(input_seq))], device=device)
logits = model(input_tensor)
next_logits = logits[0,len(input_seq)-1]
next_logits[end_id] -= 5.0
next_logits[pad_id] -= 10.0
probs = F.softmax(next_logits/temperature, dim=-1).cpu().numpy()
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cumulative_probs,p)
top_indices = sorted_indices[:cutoff+1]
top_probs = sorted_probs[:cutoff+1]
top_probs /= top_probs.sum()
next_token = np.random.choice(top_indices, p=top_probs)
if next_token==end_id and len(generated)>=min_len:
break
generated.append(int(next_token))
return ids_to_text(generated)
# ํ
์คํธ
print("\n===== ์์ฑ ๊ฒฐ๊ณผ =====")
print(generate_text_topp(model, "์ง๋ 2๋
๋์ ์ถ์ฐ์ฐ์ด ๊ตญ๊ฐ๊ฐ ํ์ํ ์ฐ๊ตฌ๋ฅผ", p=0.9))
|