File size: 11,092 Bytes
4f2d40f
0a74012
 
 
8ca26fe
0a74012
 
 
8ca26fe
0a74012
 
 
 
 
8ca26fe
0a74012
 
 
 
 
 
 
8ca26fe
0a74012
 
 
 
8ca26fe
0a74012
 
 
 
 
8ca26fe
0a74012
 
 
 
 
 
 
 
 
 
 
0094083
0a74012
 
 
 
9b34589
0a74012
 
 
 
 
85a5a0a
0a74012
 
 
 
 
 
 
 
 
 
 
 
 
340a91d
 
0a74012
 
 
 
 
 
 
0094083
0a74012
 
0094083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ca26fe
 
0094083
8ca26fe
 
0a74012
0094083
8ca26fe
 
0094083
0a74012
 
 
8ca26fe
 
dcec2c9
830aa48
7caa907
dcec2c9
1928697
dcec2c9
 
7caa907
dcec2c9
 
 
 
 
7caa907
3bd0fac
 
 
 
 
 
 
 
 
 
 
 
85d30e7
c292f6f
8ca26fe
8d881dd
 
 
1928697
 
 
 
 
 
dcec2c9
 
8d881dd
85d30e7
3e4952f
c292f6f
 
 
3bd0fac
 
8d881dd
c292f6f
 
 
8d881dd
 
3bd0fac
 
 
 
c292f6f
 
3bd0fac
8d881dd
 
 
8ca26fe
8d881dd
 
85d30e7
8d881dd
1928697
 
 
 
 
f9eec12
8d881dd
50f4d1a
 
 
 
 
 
8d881dd
50f4d1a
3bd0fac
c292f6f
3bd0fac
8d881dd
 
 
3bd0fac
 
dcec2c9
8d881dd
 
a6ed1c9
 
 
 
 
17d47d0
a6ed1c9
 
 
17d47d0
a6ed1c9
 
e5f11b0
8ca26fe
 
85d30e7
dcec2c9
a6ed1c9
8ca26fe
 
 
8d881dd
 
 
 
 
8ca26fe
8d881dd
 
8ca26fe
 
28e8f57
8ca26fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f11b0
8ca26fe
 
3bd0fac
7e66b37
8ca26fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9eec12
 
8ca26fe
 
ff72f32
8ca26fe
 
e5f11b0
0094083
8ca26fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f11b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
!pip install sentencepiece
import sentencepiece as spm
import os, json, numpy as np, tensorflow as tf
from tensorflow.keras import layers, Model
import requests
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow.keras.backend as K

print('1')
tf.get_logger().setLevel("ERROR")
SEED = 42
tf.random.set_seed(SEED)
np.random.seed(SEED)

# TPU ์ดˆ๊ธฐํ™”
try:
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="local")
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.TPUStrategy(resolver)
    print("โœ… TPU ์ดˆ๊ธฐํ™” ์™„๋ฃŒ:", resolver.cluster_spec().as_dict())
    on_tpu = True

except Exception as e:
    print("โš ๏ธ TPU ๋ฏธ์‚ฌ์šฉ, GPU/CPU๋กœ ์ง„ํ–‰:", e)
    strategy = tf.distribute.get_strategy()
    on_tpu = False

# Mixed precision
from tensorflow.keras import mixed_precision
policy = mixed_precision.Policy("mixed_bfloat16" if on_tpu else "float32")
mixed_precision.set_global_policy(policy)
print("โœ… Mixed precision:", policy)

# =======================
# 1) ํŒŒ์ผ ๋‹ค์šด๋กœ๋“œ
# =======================
def download_file(url, save_path):
    r = requests.get(url, stream=True)
    r.raise_for_status()
    with open(save_path, "wb") as f:
        for chunk in r.iter_content(8192*2):
            f.write(chunk)
    print(f"โœ… {save_path} ์ €์žฅ๋จ")

DATA_PATH = "corpus.txt"
TOKENIZER_PATH = "ko_unigram.model"

if not os.path.exists(DATA_PATH):
    download_file(
        "https://huggingface.co/datasets/Yuchan5386/Prototype/resolve/main/corpus_ko.txt?download=true",
        DATA_PATH
    )

if not os.path.exists(TOKENIZER_PATH):
    download_file(
        "https://huggingface.co/Yuchan5386/Respiso/resolve/main/bpe.model?download=true",
        TOKENIZER_PATH
    )

sp = spm.SentencePieceProcessor(TOKENIZER_PATH)

pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
start_id = sp.piece_to_id("<start>")
sep_id = sp.piece_to_id("<sep>")
end_id = sp.piece_to_id("<end>")
unk_id = sp.piece_to_id("<unk>")
vocab_size = sp.get_piece_size()
print(f"โœ… Vocabulary size: {vocab_size}")

max_len = 512
batch_size = 256

def text_to_ids(text):
    return sp.encode(text, out_type=int)

def ids_to_text(ids):
    return sp.decode(ids)

def txt_stream(file_path):
    with open(file_path, "r", encoding="utf-8") as f:
        for line in f:
            text = line.strip()
            if not text:
                continue

            ids = text_to_ids(text)
            ids = ids[:max_len - 1]  # ๋งˆ์ง€๋ง‰์— <end> ๋„ฃ๊ธฐ ์œ„ํ•ด -1

            full_input = ids + [end_id]
            pad_len = max_len - len(full_input)
            full_input += [pad_id] * pad_len

            # target = next-token shifted sequence
            target = full_input[1:] + [pad_id]
            yield (
                tf.convert_to_tensor(full_input, dtype=tf.int32),
                tf.convert_to_tensor(target, dtype=tf.int32)
            )


dataset = tf.data.Dataset.from_generator(
    lambda: txt_stream(DATA_PATH),
    output_signature=(
        tf.TensorSpec(shape=(max_len,), dtype=tf.int32),
        tf.TensorSpec(shape=(max_len,), dtype=tf.int32),
    )
)

dataset = dataset.shuffle(2000, seed=SEED).batch(batch_size, drop_remainder=True).prefetch(tf.data.AUTOTUNE)

with strategy.scope():
    dist_dataset = strategy.experimental_distribute_dataset(dataset)


class Lo(layers.Layer):
    def __init__(self, d_model):
        super().__init__()
        self.proj = layers.Dense(d_model, use_bias=True, dtype='float32')
        self.p = layers.Dense(128, use_bias=True, dtype='float32')
        self._out_dtype = 'float32'

    def call(self, x):
        x_f32 = tf.cast(x, tf.float32)
        x = self.proj(x_f32)
        x = tf.nn.gelu(x)
        x = self.p(x)
        return tf.cast(x, self._out_dtype)

class SwiGLU(layers.Layer):
    def __init__(self, d_model):
        super().__init__()
        self.W = layers.Dense(3500, dtype='float32')
        self.W1 = layers.Dense(d_model, dtype='float32')
    def call(self, x):
        x = tf.cast(x, tf.float32)
        x = self.W(x)
        a, b = tf.split(x, 2, axis=-1)
        out = self.W1(tf.nn.silu(a) * b)     
        return tf.cast(out, x.dtype)

class LoU(layers.Layer):
    def __init__(self, d_model, clip_value=5.0, eps=1e-6):
        super().__init__()
        self.d_model = d_model
        self.clip_value = float(clip_value)
        self.eps = float(eps)
        self.Q = layers.Dense(d_model, dtype='float32')
        self.K = layers.Dense(d_model, dtype='float32')
        self.V = layers.Dense(d_model, dtype='float32')
        self.Qr = Lo(d_model)
        self.Kr = Lo(d_model)
        self.Vr = Lo(d_model)
        self.proj = layers.Dense(d_model, use_bias=True, dtype='float32')
        self.O = layers.Dense(d_model, dtype='float32')
        self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
        self.norm1 = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
        
        self.alpha_linear = layers.Dense(1, activation='sigmoid', dtype='float32')

    def _ema_over_time(self, score, alpha_dynamic):
        seq = tf.transpose(score, perm=[1, 0, 2])
        alpha_seq = tf.transpose(alpha_dynamic, perm=[1, 0, 2])

        def step(prev_ema, inputs):
            x_t, alpha_t = inputs
            new = alpha_t * x_t + (1.0 - alpha_t) * prev_ema
            return new

        init = seq[0]
        first_alpha = alpha_seq[0]
        remaining_seq = seq[1:]
        remaining_alpha = alpha_seq[1:]
        elems = (remaining_seq, remaining_alpha)
        ema_seq = tf.scan(fn=step, elems=elems, initializer=init)
        ema_seq = tf.concat([tf.expand_dims(init, 0), ema_seq], axis=0)
        ema = tf.transpose(ema_seq, perm=[1, 0, 2])
        return ema

    def call(self, x):
        x_f32 = tf.cast(x, tf.float32)
        residual = x_f32
        x_f32 = self.norm1(x)

        q = self.Q(x_f32)
        k = self.K(x_f32)
        V = self.V(x_f32)
        q = self.Qr(q)
        k = self.Kr(k)
        V = self.Vr(V)

        # ๊ธฐ์กด ์ฝ”๋“œ:
        # g_q = tf.nn.sigmoid(q)
        # g_k = tf.nn.sigmoid(k)

        g_q = (tf.nn.tanh(q) + 1.0) / 2.0
        g_k = (tf.nn.tanh(k) + 1.0) / 2.0
        score = g_q * g_k

        alpha_dynamic = self.alpha_linear(x_f32)
        score_ema = self._ema_over_time(score, alpha_dynamic)
        mean_last = tf.reduce_mean(score_ema, axis=-1, keepdims=True)
        denom = tf.maximum(mean_last, self.eps)
        score_norm = score_ema / denom
        score_clipped = tf.clip_by_value(score_norm, -self.clip_value, self.clip_value)
        x_comb = score_clipped * V
        out = self.proj(x_comb)
        out = self.norm(out + residual)
        return tf.cast(out, x.dtype)

class Block(layers.Layer):
    def __init__(self, d_model):
        super().__init__()
        self.lou = LoU(d_model)
        self.glu = SwiGLU(d_model)
        self.norm = layers.LayerNormalization(epsilon=1e-5, dtype='float32')

    def call(self, x):
        x = self.lou(x)
        x = self.norm(self.glu(x)) + x
        return x

class ReLM(tf.keras.Model):
    def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1):
        super().__init__()
        self.token_embedding = layers.Embedding(vocab_size, d_model)
        self.pos_embedding = layers.Embedding(max_seq_len, d_model)
        self.blocks = [Block(d_model) for _ in range(n_layers)]
        self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype="float32")

    def call(self, x, training=False):
        batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1]
        positions = tf.range(seq_len)[tf.newaxis, :]
        x = self.token_embedding(x) + self.pos_embedding(positions)
        for block in self.blocks:
            x = block(x)
        x = self.ln_f(x)
        embedding_matrix = tf.cast(self.token_embedding.embeddings, x.dtype)
        logits = tf.matmul(x, embedding_matrix, transpose_b=True)
        return tf.cast(logits, tf.float32)

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')

def masked_loss(y_true, y_pred):
    loss = loss_fn(y_true, y_pred)
    mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32)
    masked_loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask)
    return masked_loss

def masked_perplexity(y_true, y_pred):
    loss = loss_fn(y_true, y_pred)
    mask = tf.cast(tf.not_equal(y_true, pad_id), tf.float32)
    avg_loss = tf.reduce_sum(loss * mask) / tf.reduce_sum(mask)
    return tf.exp(tf.minimum(avg_loss, 10.0))  # ์ˆ˜์น˜ ์•ˆ์ •์„ฑ ํ™•๋ณด

def create_lr_schedule(initial_lr=5e-5, decay_steps=10000, decay_rate=0.9):
    return tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate=initial_lr,
        decay_steps=decay_steps,
        decay_rate=decay_rate,
        staircase=False
    )

# ๋ชจ๋ธ ์ƒ์„ฑ
model = ReLM(
    vocab_size=vocab_size,
    max_seq_len=max_len,
    d_model=700,
    n_layers=2
)

# ์˜ตํ‹ฐ๋งˆ์ด์ € ์„ค์ •
optimizer = tf.keras.optimizers.Adam(
    learning_rate=create_lr_schedule(),
    beta_1=0.9,
    beta_2=0.95,
    epsilon=1e-8,
    clipnorm=1.0
)

# ๋ชจ๋ธ ์ปดํŒŒ์ผ
model.compile(
    optimizer=optimizer,
    loss=masked_loss,
    metrics=[
        masked_perplexity
    ]
)

# ๋”๋ฏธ ์ธํ’‹์œผ๋กœ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
dummy_input = np.zeros((1, max_len), dtype=np.int32)
model(dummy_input)
model.summary()

history = model.fit(dataset, epochs=1, verbose=1)


# ๊ฐ€์ค‘์น˜ ์ €์žฅ
model.save_weights("model.weights.h5")
print("๋ชจ๋ธ ๊ฐ€์ค‘์น˜ ์ €์žฅ ์™„๋ฃŒ!")

def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.8, min_len=20):
    model_input = text_to_ids(f"<start> {prompt}")
    model_input = model_input[:max_len]
    generated = list(model_input)
    for step in range(max_gen):
        if len(generated) > max_len:
            input_seq = generated[-max_len:]
        else:
            input_seq = generated
        input_padded = np.pad(input_seq, (0, max_len - len(input_seq)), constant_values=pad_id)
        input_tensor = tf.convert_to_tensor([input_padded])
        logits = model(input_tensor, training=False)
        next_token_logits = logits[0, len(input_seq) - 1].numpy()
        next_token_logits[end_id] -= 5.0
        next_token_logits[pad_id] -= 10.0
        probs = tf.nn.softmax(next_token_logits / temperature).numpy()
        sorted_indices = np.argsort(probs)[::-1]
        sorted_probs = probs[sorted_indices]
        cumulative_probs = np.cumsum(sorted_probs)
        cutoff = np.searchsorted(cumulative_probs, p)
        top_indices = sorted_indices[:cutoff + 1]
        top_probs = sorted_probs[:cutoff + 1]
        top_probs /= np.sum(top_probs)
        next_token_id = np.random.choice(top_indices, p=top_probs)
        if next_token_id == end_id and len(generated) >= min_len:
            break
        generated.append(int(next_token_id))
    return ids_to_text(generated)

print("\n\n===== ์ƒ์„ฑ ๊ฒฐ๊ณผ =====")  
print(generate_text_topp(model, "์ง€๋‚œ 2๋…„ ๋™์•ˆ ์ถœ์—ฐ์—ฐ์ด ๊ตญ๊ฐ€๊ฐ€ ํ•„์š”ํ•œ ์—ฐ๊ตฌ๋ฅผ", p=0.9))