File size: 7,347 Bytes
348bcce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import sentencepiece as spm

# ===============================
# SentencePiece
# ===============================
sp = spm.SentencePieceProcessor("ko_unigram.model")

pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
start_id = sp.piece_to_id("<start>")
end_id = sp.piece_to_id("<end>")
vocab_size = sp.get_piece_size()
max_len = 512
batch_size = 32
device = 'cuda' if torch.cuda.is_available() else 'cpu'

def text_to_ids(text):
    return sp.encode(text, out_type=int)

def ids_to_text(ids):
    return sp.decode(ids)

# ===============================
# Dataset
# ===============================
class TextDataset(Dataset):
    def __init__(self, file_path, num_lines=None):
        self.lines = []
        with open(file_path, "r", encoding="utf-8") as f:
            for i, line in enumerate(f):
                if num_lines is not None and i >= num_lines:
                    break
                line = line.strip()
                if line:
                    self.lines.append(line)

    def __len__(self):
        return len(self.lines)

    def __getitem__(self, idx):
        text = self.lines[idx]
        ids = text_to_ids(text)[:max_len-1]
        full_input = ids + [end_id]
        pad_len = max_len - len(full_input)
        full_input += [pad_id]*pad_len
        target = full_input[1:] + [pad_id]
        return torch.tensor(full_input, dtype=torch.long), torch.tensor(target, dtype=torch.long)

dataset = TextDataset("corpus.txt", num_lines=100000)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# ===============================
# ๋ชจ๋ธ ์ •์˜
# ===============================
class SwiGLU(nn.Module):
    def __init__(self, d_model):
        super().__init__()
        self.W = nn.Linear(d_model, 3500)
        self.W1 = nn.Linear(1750, d_model)
    def forward(self, x):
        x = self.W(x.float())
        a,b = x.chunk(2, dim=-1)
        return self.W1(F.silu(a)*b).to(x.dtype)

class SparseCausalAttention(nn.Module):
    def __init__(self, num_heads, head_dim, window_size=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.window_size = window_size
        self.q = nn.Linear(head_dim*num_heads, num_heads*head_dim)
        self.k = nn.Linear(head_dim*num_heads, num_heads*head_dim)
        self.v = nn.Linear(head_dim*num_heads, num_heads*head_dim)
        self.out = nn.Linear(num_heads*head_dim, head_dim*num_heads)

    def forward(self, x):
        B,L,D = x.shape
        q = self.q(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
        k = self.k(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
        v = self.v(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
        q = q / (self.head_dim ** 0.5)

        attn_scores = torch.matmul(q, k.transpose(-2,-1))
        mask = torch.tril(torch.ones(L,L, device=x.device))
        band_mask = torch.triu(mask, -self.window_size)
        attn_scores = attn_scores.masked_fill(band_mask==0, float('-inf'))
        attn_probs = F.softmax(attn_scores, dim=-1)
        out = torch.matmul(attn_probs, v)
        out = out.transpose(1,2).reshape(B,L,D)
        return self.out(out)

class Lo(nn.Module):
    def __init__(self,d_model):
        super().__init__()
        self.d = nn.Linear(d_model,64)
        self.w = nn.Linear(64,d_model)
        self.norm = nn.LayerNorm(d_model)
    def forward(self,x):
        return self.norm(self.w(F.silu(self.d(x))) + x)

class Block(nn.Module):
    def __init__(self,d_model):
        super().__init__()
        self.attn = SparseCausalAttention(num_heads=2, head_dim=64)
        self.glu = SwiGLU(d_model)
        self.norm = nn.LayerNorm(d_model)
        self.lo = Lo(d_model)
    def forward(self,x):
        x = self.attn(x)
        x = self.norm(self.glu(x)+x)
        x = self.lo(x)
        return x

class ReLM(nn.Module):
    def __init__(self,vocab_size,max_seq_len,d_model,n_layers):
        super().__init__()
        self.token_embedding = nn.Embedding(vocab_size,d_model)
        self.pos_embedding = nn.Embedding(max_seq_len,d_model)
        self.blocks = nn.ModuleList([Block(d_model) for _ in range(n_layers)])
        self.ln_f = nn.LayerNorm(d_model)
        self.d_model = d_model

    def forward(self,x):
        B,L = x.shape
        positions = torch.arange(L,device=x.device).unsqueeze(0)
        x = self.token_embedding(x) + self.pos_embedding(positions)
        for block in self.blocks:
            x = block(x)
        x = self.ln_f(x)
        logits = x @ self.token_embedding.weight.T
        return logits

# ===============================
# ํ•™์Šต
# ===============================
model = ReLM(vocab_size, max_len, 128, 2).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
loss_fn = nn.CrossEntropyLoss(ignore_index=pad_id)

epochs = 1
for epoch in range(epochs):
    model.train()
    total_loss = 0
    for step,(x,y) in enumerate(dataloader):
        x,y = x.to(device), y.to(device)
        optimizer.zero_grad()
        logits = model(x)
        loss = loss_fn(logits.view(-1,vocab_size), y.view(-1))
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(),1.0)
        optimizer.step()
        total_loss += loss.item()
        if step % 100 == 0:
            print(f"Epoch {epoch+1}, Step {step}, Loss: {loss.item():.4f}")
    scheduler.step()
    print(f"Epoch {epoch+1} ์™„๋ฃŒ, ํ‰๊ท  Loss: {total_loss/len(dataloader):.4f}")

torch.save(model.state_dict(), "relm_model.pth")
print("๋ชจ๋ธ ์ €์žฅ ์™„๋ฃŒ!")

# ===============================
# Top-p ์ƒ˜ํ”Œ๋ง ์ƒ์„ฑ
# ===============================
def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.6, min_len=20):
    model.eval()
    model_input = text_to_ids(f"<start> {prompt}")
    model_input = model_input[:max_len]
    generated = list(model_input)
    with torch.no_grad():
        for step in range(max_gen):
            input_seq = generated[-max_len:] if len(generated)>max_len else generated
            input_tensor = torch.tensor([input_seq + [pad_id]*(max_len-len(input_seq))], device=device)
            logits = model(input_tensor)
            next_logits = logits[0,len(input_seq)-1]
            next_logits[end_id] -= 5.0
            next_logits[pad_id] -= 10.0
            probs = F.softmax(next_logits/temperature, dim=-1).cpu().numpy()
            sorted_indices = np.argsort(probs)[::-1]
            sorted_probs = probs[sorted_indices]
            cumulative_probs = np.cumsum(sorted_probs)
            cutoff = np.searchsorted(cumulative_probs,p)
            top_indices = sorted_indices[:cutoff+1]
            top_probs = sorted_probs[:cutoff+1]
            top_probs /= top_probs.sum()
            next_token = np.random.choice(top_indices, p=top_probs)
            if next_token==end_id and len(generated)>=min_len:
                break
            generated.append(int(next_token))
    return ids_to_text(generated)

# ํ…Œ์ŠคํŠธ
print("\n===== ์ƒ์„ฑ ๊ฒฐ๊ณผ =====")
print(generate_text_topp(model, "์ง€๋‚œ 2๋…„ ๋™์•ˆ ์ถœ์—ฐ์—ฐ์ด ๊ตญ๊ฐ€๊ฐ€ ํ•„์š”ํ•œ ์—ฐ๊ตฌ๋ฅผ", p=0.9))