|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
import numpy as np |
|
|
import sentencepiece as spm |
|
|
import requests |
|
|
import os |
|
|
|
|
|
TOKENIZER_PATH = "ko_unigram.model" |
|
|
DATA_PATH = "corpus.txt" |
|
|
max_len = 128 |
|
|
|
|
|
|
|
|
|
|
|
def download_file(url, save_path): |
|
|
r = requests.get(url, stream=True) |
|
|
r.raise_for_status() |
|
|
with open(save_path, "wb") as f: |
|
|
for chunk in r.iter_content(8192*2): |
|
|
f.write(chunk) |
|
|
print(f"β
{save_path} μ μ₯λ¨") |
|
|
|
|
|
if not os.path.exists(TOKENIZER_PATH): |
|
|
download_file( |
|
|
"https://huggingface.co/Yuchan5386/inlam-100m/resolve/main/ko_unigram.model?download=true", |
|
|
TOKENIZER_PATH |
|
|
) |
|
|
if not os.path.exists(DATA_PATH): |
|
|
download_file( |
|
|
"https://huggingface.co/datasets/Yuchan5386/1/resolve/main/shuffled_corpus.txt?download=true", |
|
|
DATA_PATH |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
sp = spm.SentencePieceProcessor("ko_unigram.model") |
|
|
|
|
|
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0 |
|
|
start_id = sp.piece_to_id("<start>") |
|
|
end_id = sp.piece_to_id("<end>") |
|
|
vocab_size = sp.get_piece_size() |
|
|
max_len = 512 |
|
|
batch_size = 32 |
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
def text_to_ids(text): |
|
|
return sp.encode(text, out_type=int) |
|
|
|
|
|
def ids_to_text(ids): |
|
|
return sp.decode(ids) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TextDataset(Dataset): |
|
|
def __init__(self, file_path, num_lines=None): |
|
|
self.lines = [] |
|
|
with open(file_path, "r", encoding="utf-8") as f: |
|
|
for i, line in enumerate(f): |
|
|
if num_lines is not None and i >= num_lines: |
|
|
break |
|
|
line = line.strip() |
|
|
if line: |
|
|
self.lines.append(line) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.lines) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
text = self.lines[idx] |
|
|
ids = text_to_ids(text)[:max_len-1] |
|
|
full_input = ids + [end_id] |
|
|
pad_len = max_len - len(full_input) |
|
|
full_input += [pad_id]*pad_len |
|
|
target = full_input[1:] + [pad_id] |
|
|
return torch.tensor(full_input, dtype=torch.long), torch.tensor(target, dtype=torch.long) |
|
|
|
|
|
dataset = TextDataset("corpus.txt", num_lines=100000) |
|
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SwiGLU(nn.Module): |
|
|
def __init__(self, d_model): |
|
|
super().__init__() |
|
|
self.W = nn.Linear(d_model, 3500) |
|
|
self.W1 = nn.Linear(1750, d_model) |
|
|
def forward(self, x): |
|
|
x = self.W(x.float()) |
|
|
a,b = x.chunk(2, dim=-1) |
|
|
return self.W1(F.silu(a)*b).to(x.dtype) |
|
|
|
|
|
class SparseCausalAttention(nn.Module): |
|
|
def __init__(self, num_heads, head_dim, window_size=8): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
self.head_dim = head_dim |
|
|
self.window_size = window_size |
|
|
self.q = nn.Linear(head_dim*num_heads, num_heads*head_dim) |
|
|
self.k = nn.Linear(head_dim*num_heads, num_heads*head_dim) |
|
|
self.v = nn.Linear(head_dim*num_heads, num_heads*head_dim) |
|
|
self.out = nn.Linear(num_heads*head_dim, head_dim*num_heads) |
|
|
|
|
|
def forward(self, x): |
|
|
B,L,D = x.shape |
|
|
q = self.q(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2) |
|
|
k = self.k(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2) |
|
|
v = self.v(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2) |
|
|
q = q / (self.head_dim ** 0.5) |
|
|
|
|
|
attn_scores = torch.matmul(q, k.transpose(-2,-1)) |
|
|
mask = torch.tril(torch.ones(L,L, device=x.device)) |
|
|
band_mask = torch.triu(mask, -self.window_size) |
|
|
attn_scores = attn_scores.masked_fill(band_mask==0, float('-inf')) |
|
|
attn_probs = F.softmax(attn_scores, dim=-1) |
|
|
out = torch.matmul(attn_probs, v) |
|
|
out = out.transpose(1,2).reshape(B,L,D) |
|
|
return self.out(out) |
|
|
|
|
|
class Lo(nn.Module): |
|
|
def __init__(self,d_model): |
|
|
super().__init__() |
|
|
self.d = nn.Linear(d_model,64) |
|
|
self.w = nn.Linear(64,d_model) |
|
|
self.norm = nn.LayerNorm(d_model) |
|
|
def forward(self,x): |
|
|
return self.norm(self.w(F.silu(self.d(x))) + x) |
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__(self,d_model): |
|
|
super().__init__() |
|
|
self.attn = SparseCausalAttention(num_heads=2, head_dim=64) |
|
|
self.glu = SwiGLU(d_model) |
|
|
self.norm = nn.LayerNorm(d_model) |
|
|
self.lo = Lo(d_model) |
|
|
def forward(self,x): |
|
|
x = self.attn(x) |
|
|
x = self.norm(self.glu(x)+x) |
|
|
x = self.lo(x) |
|
|
return x |
|
|
|
|
|
class ReLM(nn.Module): |
|
|
def __init__(self,vocab_size,max_seq_len,d_model,n_layers): |
|
|
super().__init__() |
|
|
self.token_embedding = nn.Embedding(vocab_size,d_model) |
|
|
self.pos_embedding = nn.Embedding(max_seq_len,d_model) |
|
|
self.blocks = nn.ModuleList([Block(d_model) for _ in range(n_layers)]) |
|
|
self.ln_f = nn.LayerNorm(d_model) |
|
|
self.d_model = d_model |
|
|
|
|
|
def forward(self,x): |
|
|
B,L = x.shape |
|
|
positions = torch.arange(L,device=x.device).unsqueeze(0) |
|
|
x = self.token_embedding(x) + self.pos_embedding(positions) |
|
|
for block in self.blocks: |
|
|
x = block(x) |
|
|
x = self.ln_f(x) |
|
|
logits = x @ self.token_embedding.weight.T |
|
|
return logits |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = ReLM(vocab_size, max_len, 128, 2).to(device) |
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5) |
|
|
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) |
|
|
loss_fn = nn.CrossEntropyLoss(ignore_index=pad_id) |
|
|
|
|
|
epochs = 1 |
|
|
for epoch in range(epochs): |
|
|
model.train() |
|
|
total_loss = 0 |
|
|
for step,(x,y) in enumerate(dataloader): |
|
|
x,y = x.to(device), y.to(device) |
|
|
optimizer.zero_grad() |
|
|
logits = model(x) |
|
|
loss = loss_fn(logits.view(-1,vocab_size), y.view(-1)) |
|
|
loss.backward() |
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(),1.0) |
|
|
optimizer.step() |
|
|
total_loss += loss.item() |
|
|
if step % 100 == 0: |
|
|
print(f"Epoch {epoch+1}, Step {step}, Loss: {loss.item():.4f}") |
|
|
scheduler.step() |
|
|
print(f"Epoch {epoch+1} μλ£, νκ· Loss: {total_loss/len(dataloader):.4f}") |
|
|
|
|
|
torch.save(model.state_dict(), "relm_model.pth") |
|
|
print("λͺ¨λΈ μ μ₯ μλ£!") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.6, min_len=20): |
|
|
model.eval() |
|
|
model_input = text_to_ids(f"<start> {prompt}") |
|
|
model_input = model_input[:max_len] |
|
|
generated = list(model_input) |
|
|
with torch.no_grad(): |
|
|
for step in range(max_gen): |
|
|
input_seq = generated[-max_len:] if len(generated)>max_len else generated |
|
|
input_tensor = torch.tensor([input_seq + [pad_id]*(max_len-len(input_seq))], device=device) |
|
|
logits = model(input_tensor) |
|
|
next_logits = logits[0,len(input_seq)-1] |
|
|
next_logits[end_id] -= 5.0 |
|
|
next_logits[pad_id] -= 10.0 |
|
|
probs = F.softmax(next_logits/temperature, dim=-1).cpu().numpy() |
|
|
sorted_indices = np.argsort(probs)[::-1] |
|
|
sorted_probs = probs[sorted_indices] |
|
|
cumulative_probs = np.cumsum(sorted_probs) |
|
|
cutoff = np.searchsorted(cumulative_probs,p) |
|
|
top_indices = sorted_indices[:cutoff+1] |
|
|
top_probs = sorted_probs[:cutoff+1] |
|
|
top_probs /= top_probs.sum() |
|
|
next_token = np.random.choice(top_indices, p=top_probs) |
|
|
if next_token==end_id and len(generated)>=min_len: |
|
|
break |
|
|
generated.append(int(next_token)) |
|
|
return ids_to_text(generated) |
|
|
|
|
|
|
|
|
print("\n===== μμ± κ²°κ³Ό =====") |
|
|
print(generate_text_topp(model, "μ§λ 2λ
λμ μΆμ°μ°μ΄ κ΅κ°κ° νμν μ°κ΅¬λ₯Ό", p=0.9)) |
|
|
|