model-prototype / Model_torch.py
Yuchan
Update Model_torch.py
128be27 verified
raw
history blame
8.19 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import numpy as np
import sentencepiece as spm
import requests
import os
TOKENIZER_PATH = "ko_unigram.model"
DATA_PATH = "corpus.txt" # 36M λ¬Έμž₯ ν…μŠ€νŠΈ 파일
max_len = 128
# ===============================
# 1️⃣ 파일 λ‹€μš΄λ‘œλ“œ
# ===============================
def download_file(url, save_path):
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
f.write(chunk)
print(f"βœ… {save_path} μ €μž₯됨")
if not os.path.exists(TOKENIZER_PATH):
download_file(
"https://huggingface.co/Yuchan5386/inlam-100m/resolve/main/ko_unigram.model?download=true",
TOKENIZER_PATH
)
if not os.path.exists(DATA_PATH):
download_file(
"https://huggingface.co/datasets/Yuchan5386/1/resolve/main/shuffled_corpus.txt?download=true",
DATA_PATH
)
# ===============================
# SentencePiece
# ===============================
sp = spm.SentencePieceProcessor("ko_unigram.model")
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
start_id = sp.piece_to_id("<start>")
end_id = sp.piece_to_id("<end>")
vocab_size = sp.get_piece_size()
max_len = 512
batch_size = 32
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
# ===============================
# Dataset
# ===============================
class TextDataset(Dataset):
def __init__(self, file_path, num_lines=None):
self.lines = []
with open(file_path, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
if num_lines is not None and i >= num_lines:
break
line = line.strip()
if line:
self.lines.append(line)
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
text = self.lines[idx]
ids = text_to_ids(text)[:max_len-1]
full_input = ids + [end_id]
pad_len = max_len - len(full_input)
full_input += [pad_id]*pad_len
target = full_input[1:] + [pad_id]
return torch.tensor(full_input, dtype=torch.long), torch.tensor(target, dtype=torch.long)
dataset = TextDataset("corpus.txt", num_lines=100000)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# ===============================
# λͺ¨λΈ μ •μ˜
# ===============================
class SwiGLU(nn.Module):
def __init__(self, d_model):
super().__init__()
self.W = nn.Linear(d_model, 3500)
self.W1 = nn.Linear(1750, d_model)
def forward(self, x):
x = self.W(x.float())
a,b = x.chunk(2, dim=-1)
return self.W1(F.silu(a)*b).to(x.dtype)
class SparseCausalAttention(nn.Module):
def __init__(self, num_heads, head_dim, window_size=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.window_size = window_size
self.q = nn.Linear(head_dim*num_heads, num_heads*head_dim)
self.k = nn.Linear(head_dim*num_heads, num_heads*head_dim)
self.v = nn.Linear(head_dim*num_heads, num_heads*head_dim)
self.out = nn.Linear(num_heads*head_dim, head_dim*num_heads)
def forward(self, x):
B,L,D = x.shape
q = self.q(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
k = self.k(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
v = self.v(x).view(B,L,self.num_heads,self.head_dim).transpose(1,2)
q = q / (self.head_dim ** 0.5)
attn_scores = torch.matmul(q, k.transpose(-2,-1))
mask = torch.tril(torch.ones(L,L, device=x.device))
band_mask = torch.triu(mask, -self.window_size)
attn_scores = attn_scores.masked_fill(band_mask==0, float('-inf'))
attn_probs = F.softmax(attn_scores, dim=-1)
out = torch.matmul(attn_probs, v)
out = out.transpose(1,2).reshape(B,L,D)
return self.out(out)
class Lo(nn.Module):
def __init__(self,d_model):
super().__init__()
self.d = nn.Linear(d_model,64)
self.w = nn.Linear(64,d_model)
self.norm = nn.LayerNorm(d_model)
def forward(self,x):
return self.norm(self.w(F.silu(self.d(x))) + x)
class Block(nn.Module):
def __init__(self,d_model):
super().__init__()
self.attn = SparseCausalAttention(num_heads=2, head_dim=64)
self.glu = SwiGLU(d_model)
self.norm = nn.LayerNorm(d_model)
self.lo = Lo(d_model)
def forward(self,x):
x = self.attn(x)
x = self.norm(self.glu(x)+x)
x = self.lo(x)
return x
class ReLM(nn.Module):
def __init__(self,vocab_size,max_seq_len,d_model,n_layers):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size,d_model)
self.pos_embedding = nn.Embedding(max_seq_len,d_model)
self.blocks = nn.ModuleList([Block(d_model) for _ in range(n_layers)])
self.ln_f = nn.LayerNorm(d_model)
self.d_model = d_model
def forward(self,x):
B,L = x.shape
positions = torch.arange(L,device=x.device).unsqueeze(0)
x = self.token_embedding(x) + self.pos_embedding(positions)
for block in self.blocks:
x = block(x)
x = self.ln_f(x)
logits = x @ self.token_embedding.weight.T
return logits
# ===============================
# ν•™μŠ΅
# ===============================
model = ReLM(vocab_size, max_len, 128, 2).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
loss_fn = nn.CrossEntropyLoss(ignore_index=pad_id)
epochs = 1
for epoch in range(epochs):
model.train()
total_loss = 0
for step,(x,y) in enumerate(dataloader):
x,y = x.to(device), y.to(device)
optimizer.zero_grad()
logits = model(x)
loss = loss_fn(logits.view(-1,vocab_size), y.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),1.0)
optimizer.step()
total_loss += loss.item()
if step % 100 == 0:
print(f"Epoch {epoch+1}, Step {step}, Loss: {loss.item():.4f}")
scheduler.step()
print(f"Epoch {epoch+1} μ™„λ£Œ, 평균 Loss: {total_loss/len(dataloader):.4f}")
torch.save(model.state_dict(), "relm_model.pth")
print("λͺ¨λΈ μ €μž₯ μ™„λ£Œ!")
# ===============================
# Top-p μƒ˜ν”Œλ§ 생성
# ===============================
def generate_text_topp(model, prompt, max_len=150, max_gen=150, p=0.9, temperature=0.6, min_len=20):
model.eval()
model_input = text_to_ids(f"<start> {prompt}")
model_input = model_input[:max_len]
generated = list(model_input)
with torch.no_grad():
for step in range(max_gen):
input_seq = generated[-max_len:] if len(generated)>max_len else generated
input_tensor = torch.tensor([input_seq + [pad_id]*(max_len-len(input_seq))], device=device)
logits = model(input_tensor)
next_logits = logits[0,len(input_seq)-1]
next_logits[end_id] -= 5.0
next_logits[pad_id] -= 10.0
probs = F.softmax(next_logits/temperature, dim=-1).cpu().numpy()
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cumulative_probs,p)
top_indices = sorted_indices[:cutoff+1]
top_probs = sorted_probs[:cutoff+1]
top_probs /= top_probs.sum()
next_token = np.random.choice(top_indices, p=top_probs)
if next_token==end_id and len(generated)>=min_len:
break
generated.append(int(next_token))
return ids_to_text(generated)
# ν…ŒμŠ€νŠΈ
print("\n===== 생성 κ²°κ³Ό =====")
print(generate_text_topp(model, "μ§€λ‚œ 2λ…„ λ™μ•ˆ μΆœμ—°μ—°μ΄ κ΅­κ°€κ°€ ν•„μš”ν•œ 연ꡬλ₯Ό", p=0.9))