File size: 2,311 Bytes
71bc004
 
 
 
 
 
0c3cf89
71bc004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5e77e6
71bc004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
pipeline_tag: translation
language: multilingual
library_name: transformers
base_model:
- FacebookAI/xlm-roberta-large
license: apache-2.0
---

<div align="center">

<h1 style="font-family: 'Arial', sans-serif; font-size: 28px; font-weight: bold; color: black;">
    📊 Estimating Machine Translation Difficulty
</h1>

</div>

<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
    <a href="https://arxiv.org/abs/2508.10175"><img src="https://img.shields.io/badge/arXiv-2508.10175-b31b1b.svg"></a> &nbsp; &nbsp;
    <a href="https://huggingface.co/collections/Prosho/translation-difficulty-estimators-6816665c008e1d22426eb6c4"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> &nbsp; &nbsp;
</div>

This repository contains one of the two **SENTINEL<sub>SRC</sub>** metric models analyzed in our paper **Estimating Machine Translation Difficulty**.

## Usage

To run this model, install the following git repository:

```bash
pip install git+https://github.com/prosho-97/guardians-mt-eval
```

After that, you can use this model within Python in the following way:

```python
from sentinel_metric import download_model, load_from_checkpoint

model_path = download_model("Prosho/sentinel-src-24")
model = load_from_checkpoint(model_path)

data = [
    {"src": "Please sign the form."},
    {"src": "He spilled the beans, then backpedaled—talk about mixed signals!"}
]

output = model.predict(data, batch_size=8, gpus=1)
```

Output:
```python
# Segment scores
>>> output.scores
[0.5726182460784912, -0.12408381700515747]

# System score
>>> output.system_score
0.22426721453666687
```

Where the higher the output score, the easier it is to translate the input source text.

## Cite this work
This work has been accepted at [EMNLP 2025](https://2025.emnlp.org/). If you use any part, please consider citing our paper as follows:

```bibtex
@misc{proietti2025estimatingmachinetranslationdifficulty,
      title={Estimating Machine Translation Difficulty}, 
      author={Lorenzo Proietti and Stefano Perrella and Vilém Zouhar and Roberto Navigli and Tom Kocmi},
      year={2025},
      eprint={2508.10175},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2508.10175}, 
}
```