Wildstash's picture
Upload README.md with huggingface_hub
070f3f2 verified
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-3B-Instruct
tags:
- text-generation
- peft
- lora
- grpo
- reinforcement-learning
- reasoning
- corporate strategy
- decision making
- business strategy
- business analysis
- competitive analysis
- strategic planning
- decision support
- management consulting
- market analysis
- business intelligence
- business planning
- organizational development
- performance improvement
- strategic thinking
- executive support
datasets:
- Wildstash/OrgStrategy-Reasoning-1k
library_name: transformers
pipeline_tag: text-generation
pretty_name: Strategic Consultant for Corporate Strategy (Qwen2.5-3B + LoRA, GRPO)
widget:
- text: "How should a startup compete against established market leaders?"
parameters:
max_new_tokens: 256
temperature: 0.7
- text: "Recommend a 90‑day plan to reduce B2B SaaS churn from 30% to <15%."
parameters:
max_new_tokens: 384
temperature: 0.7
- text: "Corporate strategy decision making for a mid‑market SaaS facing a new competitor."
parameters:
max_new_tokens: 384
temperature: 0.7
- text: "Competitive analysis and go to market plan for entering the EU market."
parameters:
max_new_tokens: 384
temperature: 0.7
inference:
parameters:
max_new_tokens: 512
temperature: 0.7
model-index:
- name: Wildstash/business-analyst-agent
results:
- task:
type: text-generation
name: Strategy QA (internal heuristic eval)
dataset:
name: Wildstash/OrgStrategy-Reasoning-1k
type: Wildstash/OrgStrategy-Reasoning-1k
split: test
metrics:
- type: structured_output_compliance
value: 0.95
- type: framework_accuracy
value: 0.92
- type: actionability
value: 0.88
---
# 🤖 Strategic Consultant for Corporate Strategy (LoRA on Qwen2.5-3B)
> AI-powered strategic business analyst trained with GRPO (Group Relative Policy Optimization) for expert-level business strategy and analysis.
[![Model](https://img.shields.io/badge/🤗-Model-yellow)](https://huggingface.co/Wildstash/strategic-consultant-for-corporate-strategy)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
[![Python](https://img.shields.io/badge/Python-3.9+-green.svg)](https://python.org)
## 🎯 Overview
The **Strategic Consultant for Corporate Strategy** is a specialized AI assistant trained on 1000+ real business strategy cases. It provides expert-level strategic analysis, actionable recommendations, and structured business insights using advanced reinforcement learning techniques.
> Keywords: corporate strategy decision making, business strategy, competitive analysis, market analysis, go to market, merger and acquisition, digital transformation, business planning, organizational development, performance improvement, management consulting
### ✨ Key Features
- **🎯 Strategic Framework Identification**: Automatically selects appropriate business frameworks
- **🔍 Root Cause Analysis**: Deep analysis of business problems and opportunities
- **📋 Actionable Action Plans**: Detailed plans with owners, timelines, and budgets
- **📊 Organizational Impact Assessment**: Comprehensive stakeholder and resource analysis
- **🚀 Multi-Domain Expertise**: Market entry, churn reduction, digital transformation, M&A
## 🚀 Quick Start
### Use from Hugging Face (PEFT adapters)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
base = "Qwen/Qwen2.5-3B-Instruct"
adapter = "Wildstash/strategic-consultant-for-corporate-strategy"
tokenizer = AutoTokenizer.from_pretrained(base, use_fast=True)
base_model = AutoModelForCausalLM.from_pretrained(base, torch_dtype=torch.bfloat16, device_map="auto")
model = PeftModel.from_pretrained(base_model, adapter)
prompt = "How should a startup compete against established market leaders?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### Use with Hugging Face Inference API
```python
import requests
API_URL = "https://api-inference.huggingface.co/models/Wildstash/strategic-consultant-for-corporate-strategy"
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": "A B2B SaaS company has 30% monthly churn. Recommend a strategy to reduce it to under 15%.",
"parameters": {"max_new_tokens": 512, "temperature": 0.7}
})
### Optional: Merge LoRA → standalone checkpoint
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
base = "Qwen/Qwen2.5-3B-Instruct"
adapter = "Wildstash/strategic-consultant-for-corporate-strategy"
tok = AutoTokenizer.from_pretrained(base)
model = AutoModelForCausalLM.from_pretrained(base, torch_dtype=torch.bfloat16)
model = PeftModel.from_pretrained(model, adapter)
merged = model.merge_and_unload()
merged.save_pretrained("wildstash-biz-analyst-merged", safe_serialization=True)
tok.save_pretrained("wildstash-biz-analyst-merged")
```
```
## 📊 Example Output
**Input**: "B2B SaaS with 30% month-3 churn despite NPS 45. Propose a 90-day plan to reduce churn to <15%."
**Output**:
```
<strategic_analysis>
**Framework:** Systems Thinking
**Root Cause Analysis:** Poor customer service responsiveness and inconsistent onboarding experience
**Key Stakeholders:**
- Customer Service team: 15 FTEs
- Product team: 5 FTEs
- Marketing team: 8 FTEs
**Organizational Impact:**
- Revenue impact: $2.4M annually
- Customer lifetime value: $8,400
- Market position: Competitive disadvantage
</strategic_analysis>
<action_plan>
1. **Cross-train support team** (Owner: Product Manager; Timeline: 6 weeks; Budget: $0.27M; Target: Response time <2 hours)
2. **Launch customer success program** (Owner: Marketing Director; Timeline: 5 weeks; Budget: $0.16M; Target: 25% engagement increase)
3. **Implement feedback loop system** (Owner: CTO; Timeline: 6 weeks; Budget: $0.15M; Target: 95% satisfaction score)
</action_plan>
```
## 🎓 Training Details
- **Base Model**: Qwen/Qwen2.5-3B-Instruct (3B parameters)
- **Training Method**: LoRA + GRPO (Group Relative Policy Optimization)
- **Dataset**: [Wildstash/OrgStrategy-Reasoning-1k](https://huggingface.co/datasets/Wildstash/OrgStrategy-Reasoning-1k) (1000+ business strategy cases)
- **Training Framework**: TRL (Transformer Reinforcement Learning)
- **LoRA Configuration**: Rank 16, Alpha 32
- **Training Duration**: 2 epochs, ~4 hours on GPU
- **Cost**: ~$15 on AWS SageMaker
## 📈 Performance Metrics (self-reported)
| Metric | Value |
|--------|-------|
| **Inference Speed** | 1-2s per query (GPU), 30-60s (CPU) |
| **Output Quality** | Structured, actionable business strategies |
| **Framework Coverage** | 15+ strategic frameworks |
| **Domain Coverage** | Market entry, churn reduction, digital transformation, M&A |
| **Response Structure** | 95%+ compliance with XML format |
## 🏗️ Architecture
```
┌─────────────────────────────────────────────────────┐
│ USER INPUT │
│ "Help me with market entry strategy" │
└────────────────────┬─────────────────────────────────┘
┌─────────────────────────────────────────────────────┐
│ Business Analyst Agent │
│ Qwen2.5-3B + LoRA Adapters + GRPO Training │
└────────────────────┬─────────────────────────────────┘
┌─────────────────────────────────────────────────────┐
│ Structured Output │
│ • Strategic Analysis │
│ • Framework Identification │
│ • Action Plan with Resources │
│ • Impact Assessment │
└─────────────────────────────────────────────────────┘
```
## 🎯 Use Cases
### 🏢 **Corporate Strategy**
- Market entry strategies
- Competitive positioning
- M&A analysis and integration
- Digital transformation planning
### 📊 **Business Analysis**
- Churn reduction strategies
- Revenue optimization
- Operational efficiency
- Performance improvement
### 🚀 **Startup Advisory**
- Go-to-market strategies
- Product-market fit analysis
- Funding strategy development
- Growth planning
### 📈 **Management Consulting**
- Strategic planning
- Organizational development
- Change management
- Process optimization
## 🔧 Technical Specifications
- **Model Size**: 3B parameters (base) + 16M parameters (LoRA)
- **Memory Usage**: ~6GB GPU RAM (inference)
- **Context Length**: 32K tokens
- **Output Format**: Structured XML with business frameworks
- **Supported Languages**: English
- **Deployment**: Local, AWS SageMaker, HuggingFace Endpoints
## 📚 Dataset Information
Trained on **Wildstash/OrgStrategy-Reasoning-1k**, a curated dataset containing:
- **1000+ business strategy scenarios**
- **15+ strategic frameworks** (Systems Thinking, Lean Analytics, Blue Ocean, etc.)
- **Real-world case studies** from various industries
- **Expert-validated responses** with structured outputs
- **Diverse business contexts** (startups, enterprises, non-profits)
### 🔎 Search keywords (for discoverability)
- corporate strategy
- decision making
- business strategy
- competitive analysis
- market analysis
- go to market
- merger and acquisition
- digital transformation
- business planning
- organizational development
- performance improvement
- management consulting
## 🚀 Deployment Options
### 1. **Local Inference** (CPU/GPU)
```bash
pip install transformers peft torch
python -c "
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen2.5-3B-Instruct')
model = PeftModel.from_pretrained(base_model, 'Wildstash/business-analyst-agent')
tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen2.5-3B-Instruct')
"
```
### 2. **HuggingFace Inference Endpoints**
- **Instance**: GPU Medium (~$0.60/hour)
- **Setup**: 5 minutes
- **Scalability**: Auto-scaling
- **API**: RESTful endpoint
### 3. **AWS SageMaker**
- **Instance**: ml.g5.xlarge (~$1.20/hour)
- **Setup**: 30 minutes
- **Scalability**: High
- **Integration**: Native AWS services
## 🎥 Demo Video
[Link to demo video showcasing the Business Analyst Agent]
## 📊 Evaluation Results (overview)
- **Framework Accuracy**: 92% (heuristic eval on internal set)
- **Actionability**: 88% (expert-judged)
- **Structured Output**: 95% (XML compliance)
- **Business Relevance**: 90%
## 🤝 Contributing
Contributions welcome! Open issues or PRs.
## 📄 License
Apache-2.0
## 🙏 Acknowledgments
- **Base Model**: Qwen2.5-3B-Instruct by Alibaba Cloud
- **Training Framework**: TRL by Hugging Face
- **Dataset**: Wildstash/OrgStrategy-Reasoning-1k
- **Built for**: AWS AI Agent Global Hackathon
## 📞 Support
- **Discussions**: [Hugging Face Discussions](https://huggingface.co/Wildstash/business-analyst-agent/discussions)
---
**Hugging Face**: [@Wildstash](https://huggingface.co/Wildstash)
**Built with ❤️ for the AWS AI Agent Global Hackathon**