SetFit with sentence-transformers/paraphrase-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 9 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| navigation | |
| product | |
| service | |
| brand | |
| legal | |
| listing | |
| post | |
| testimonial | |
| account_shop |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("Wispra-fr/setfit-url-classifier")
# Run inference
preds = model("https://ynspir.com")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 1.0 | 1 |
| Label | Training Sample Count |
|---|---|
| legal | 70 |
| brand | 86 |
| product | 176 |
| service | 184 |
| post | 133 |
| navigation | 53 |
| listing | 265 |
| account_shop | 38 |
| testimonial | 132 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: undersampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- max_length: 128
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0014 | 1 | 0.2637 | - |
| 0.0141 | 10 | 0.2127 | - |
| 0.0281 | 20 | 0.2137 | - |
| 0.0422 | 30 | 0.2431 | - |
| 0.0563 | 40 | 0.2347 | - |
| 0.0703 | 50 | 0.2264 | - |
| 0.0844 | 60 | 0.2391 | - |
| 0.0985 | 70 | 0.2395 | - |
| 0.1125 | 80 | 0.253 | - |
| 0.1266 | 90 | 0.2295 | - |
| 0.1406 | 100 | 0.2281 | - |
| 0.1547 | 110 | 0.2216 | - |
| 0.1688 | 120 | 0.2297 | - |
| 0.1828 | 130 | 0.2471 | - |
| 0.1969 | 140 | 0.209 | - |
| 0.2110 | 150 | 0.1998 | - |
| 0.2250 | 160 | 0.1932 | - |
| 0.2391 | 170 | 0.1821 | - |
| 0.2532 | 180 | 0.1894 | - |
| 0.2672 | 190 | 0.1685 | - |
| 0.2813 | 200 | 0.163 | - |
| 0.2954 | 210 | 0.2206 | - |
| 0.3094 | 220 | 0.1698 | - |
| 0.3235 | 230 | 0.2171 | - |
| 0.3376 | 240 | 0.1834 | - |
| 0.3516 | 250 | 0.1678 | - |
| 0.3657 | 260 | 0.1537 | - |
| 0.3797 | 270 | 0.1527 | - |
| 0.3938 | 280 | 0.1751 | - |
| 0.4079 | 290 | 0.152 | - |
| 0.4219 | 300 | 0.1371 | - |
| 0.4360 | 310 | 0.1403 | - |
| 0.4501 | 320 | 0.1042 | - |
| 0.4641 | 330 | 0.1108 | - |
| 0.4782 | 340 | 0.1003 | - |
| 0.4923 | 350 | 0.1226 | - |
| 0.5063 | 360 | 0.1613 | - |
| 0.5204 | 370 | 0.1259 | - |
| 0.5345 | 380 | 0.0877 | - |
| 0.5485 | 390 | 0.1067 | - |
| 0.5626 | 400 | 0.1143 | - |
| 0.5767 | 410 | 0.096 | - |
| 0.5907 | 420 | 0.0557 | - |
| 0.6048 | 430 | 0.051 | - |
| 0.6188 | 440 | 0.1339 | - |
| 0.6329 | 450 | 0.0846 | - |
| 0.6470 | 460 | 0.0657 | - |
| 0.6610 | 470 | 0.0812 | - |
| 0.6751 | 480 | 0.058 | - |
| 0.6892 | 490 | 0.093 | - |
| 0.7032 | 500 | 0.0397 | - |
| 0.7173 | 510 | 0.0932 | - |
| 0.7314 | 520 | 0.062 | - |
| 0.7454 | 530 | 0.0595 | - |
| 0.7595 | 540 | 0.0774 | - |
| 0.7736 | 550 | 0.0444 | - |
| 0.7876 | 560 | 0.06 | - |
| 0.8017 | 570 | 0.0486 | - |
| 0.8158 | 580 | 0.0708 | - |
| 0.8298 | 590 | 0.0518 | - |
| 0.8439 | 600 | 0.0479 | - |
| 0.8579 | 610 | 0.0511 | - |
| 0.8720 | 620 | 0.0722 | - |
| 0.8861 | 630 | 0.0691 | - |
| 0.9001 | 640 | 0.0841 | - |
| 0.9142 | 650 | 0.0997 | - |
| 0.9283 | 660 | 0.0583 | - |
| 0.9423 | 670 | 0.0264 | - |
| 0.9564 | 680 | 0.0452 | - |
| 0.9705 | 690 | 0.0174 | - |
| 0.9845 | 700 | 0.0448 | - |
| 0.9986 | 710 | 0.043 | - |
| 1.0127 | 720 | 0.0801 | - |
| 1.0267 | 730 | 0.063 | - |
| 1.0408 | 740 | 0.0376 | - |
| 1.0549 | 750 | 0.0273 | - |
| 1.0689 | 760 | 0.0516 | - |
| 1.0830 | 770 | 0.0317 | - |
| 1.0970 | 780 | 0.0247 | - |
| 1.1111 | 790 | 0.0254 | - |
| 1.1252 | 800 | 0.0213 | - |
| 1.1392 | 810 | 0.0172 | - |
| 1.1533 | 820 | 0.0365 | - |
| 1.1674 | 830 | 0.0247 | - |
| 1.1814 | 840 | 0.0471 | - |
| 1.1955 | 850 | 0.0248 | - |
| 1.2096 | 860 | 0.0711 | - |
| 1.2236 | 870 | 0.0231 | - |
| 1.2377 | 880 | 0.0504 | - |
| 1.2518 | 890 | 0.0477 | - |
| 1.2658 | 900 | 0.0104 | - |
| 1.2799 | 910 | 0.0338 | - |
| 1.2940 | 920 | 0.0116 | - |
| 1.3080 | 930 | 0.0599 | - |
| 1.3221 | 940 | 0.0215 | - |
| 1.3361 | 950 | 0.0418 | - |
| 1.3502 | 960 | 0.0265 | - |
| 1.3643 | 970 | 0.0371 | - |
| 1.3783 | 980 | 0.0334 | - |
| 1.3924 | 990 | 0.0478 | - |
| 1.4065 | 1000 | 0.0223 | - |
| 1.4205 | 1010 | 0.0132 | - |
| 1.4346 | 1020 | 0.0166 | - |
| 1.4487 | 1030 | 0.035 | - |
| 1.4627 | 1040 | 0.0081 | - |
| 1.4768 | 1050 | 0.0238 | - |
| 1.4909 | 1060 | 0.0177 | - |
| 1.5049 | 1070 | 0.009 | - |
| 1.5190 | 1080 | 0.0296 | - |
| 1.5331 | 1090 | 0.0323 | - |
| 1.5471 | 1100 | 0.0237 | - |
| 1.5612 | 1110 | 0.0298 | - |
| 1.5752 | 1120 | 0.0592 | - |
| 1.5893 | 1130 | 0.0052 | - |
| 1.6034 | 1140 | 0.0112 | - |
| 1.6174 | 1150 | 0.0477 | - |
| 1.6315 | 1160 | 0.0356 | - |
| 1.6456 | 1170 | 0.0324 | - |
| 1.6596 | 1180 | 0.0412 | - |
| 1.6737 | 1190 | 0.0484 | - |
| 1.6878 | 1200 | 0.0262 | - |
| 1.7018 | 1210 | 0.011 | - |
| 1.7159 | 1220 | 0.0075 | - |
| 1.7300 | 1230 | 0.0471 | - |
| 1.7440 | 1240 | 0.0398 | - |
| 1.7581 | 1250 | 0.0335 | - |
| 1.7722 | 1260 | 0.0278 | - |
| 1.7862 | 1270 | 0.0533 | - |
| 1.8003 | 1280 | 0.0291 | - |
| 1.8143 | 1290 | 0.0122 | - |
| 1.8284 | 1300 | 0.0039 | - |
| 1.8425 | 1310 | 0.0043 | - |
| 1.8565 | 1320 | 0.0135 | - |
| 1.8706 | 1330 | 0.0182 | - |
| 1.8847 | 1340 | 0.0306 | - |
| 1.8987 | 1350 | 0.0135 | - |
| 1.9128 | 1360 | 0.0034 | - |
| 1.9269 | 1370 | 0.0109 | - |
| 1.9409 | 1380 | 0.0209 | - |
| 1.9550 | 1390 | 0.0244 | - |
| 1.9691 | 1400 | 0.0052 | - |
| 1.9831 | 1410 | 0.0095 | - |
| 1.9972 | 1420 | 0.0067 | - |
| 2.0113 | 1430 | 0.0091 | - |
| 2.0253 | 1440 | 0.0077 | - |
| 2.0394 | 1450 | 0.0246 | - |
| 2.0534 | 1460 | 0.0123 | - |
| 2.0675 | 1470 | 0.0061 | - |
| 2.0816 | 1480 | 0.0375 | - |
| 2.0956 | 1490 | 0.0187 | - |
| 2.1097 | 1500 | 0.0029 | - |
| 2.1238 | 1510 | 0.0043 | - |
| 2.1378 | 1520 | 0.0191 | - |
| 2.1519 | 1530 | 0.0039 | - |
| 2.1660 | 1540 | 0.0628 | - |
| 2.1800 | 1550 | 0.0278 | - |
| 2.1941 | 1560 | 0.0106 | - |
| 2.2082 | 1570 | 0.0192 | - |
| 2.2222 | 1580 | 0.0127 | - |
| 2.2363 | 1590 | 0.0053 | - |
| 2.2504 | 1600 | 0.0211 | - |
| 2.2644 | 1610 | 0.0291 | - |
| 2.2785 | 1620 | 0.0043 | - |
| 2.2925 | 1630 | 0.0147 | - |
| 2.3066 | 1640 | 0.0219 | - |
| 2.3207 | 1650 | 0.0017 | - |
| 2.3347 | 1660 | 0.0114 | - |
| 2.3488 | 1670 | 0.0056 | - |
| 2.3629 | 1680 | 0.0075 | - |
| 2.3769 | 1690 | 0.0191 | - |
| 2.3910 | 1700 | 0.0049 | - |
| 2.4051 | 1710 | 0.0279 | - |
| 2.4191 | 1720 | 0.0081 | - |
| 2.4332 | 1730 | 0.0047 | - |
| 2.4473 | 1740 | 0.0035 | - |
| 2.4613 | 1750 | 0.0024 | - |
| 2.4754 | 1760 | 0.0022 | - |
| 2.4895 | 1770 | 0.0091 | - |
| 2.5035 | 1780 | 0.0238 | - |
| 2.5176 | 1790 | 0.0084 | - |
| 2.5316 | 1800 | 0.0267 | - |
| 2.5457 | 1810 | 0.0071 | - |
| 2.5598 | 1820 | 0.0027 | - |
| 2.5738 | 1830 | 0.0226 | - |
| 2.5879 | 1840 | 0.0032 | - |
| 2.6020 | 1850 | 0.0014 | - |
| 2.6160 | 1860 | 0.0028 | - |
| 2.6301 | 1870 | 0.0043 | - |
| 2.6442 | 1880 | 0.0105 | - |
| 2.6582 | 1890 | 0.0036 | - |
| 2.6723 | 1900 | 0.0031 | - |
| 2.6864 | 1910 | 0.008 | - |
| 2.7004 | 1920 | 0.0296 | - |
| 2.7145 | 1930 | 0.0103 | - |
| 2.7286 | 1940 | 0.0234 | - |
| 2.7426 | 1950 | 0.0035 | - |
| 2.7567 | 1960 | 0.0252 | - |
| 2.7707 | 1970 | 0.0238 | - |
| 2.7848 | 1980 | 0.0045 | - |
| 2.7989 | 1990 | 0.0304 | - |
| 2.8129 | 2000 | 0.0021 | - |
| 2.8270 | 2010 | 0.0046 | - |
| 2.8411 | 2020 | 0.0027 | - |
| 2.8551 | 2030 | 0.0169 | - |
| 2.8692 | 2040 | 0.0089 | - |
| 2.8833 | 2050 | 0.0187 | - |
| 2.8973 | 2060 | 0.0032 | - |
| 2.9114 | 2070 | 0.0025 | - |
| 2.9255 | 2080 | 0.0161 | - |
| 2.9395 | 2090 | 0.0023 | - |
| 2.9536 | 2100 | 0.0014 | - |
| 2.9677 | 2110 | 0.004 | - |
| 2.9817 | 2120 | 0.0061 | - |
| 2.9958 | 2130 | 0.0227 | - |
| 3.0098 | 2140 | 0.0012 | - |
| 3.0239 | 2150 | 0.0377 | - |
| 3.0380 | 2160 | 0.0145 | - |
| 3.0520 | 2170 | 0.022 | - |
| 3.0661 | 2180 | 0.0017 | - |
| 3.0802 | 2190 | 0.0013 | - |
| 3.0942 | 2200 | 0.0018 | - |
| 3.1083 | 2210 | 0.0025 | - |
| 3.1224 | 2220 | 0.0024 | - |
| 3.1364 | 2230 | 0.0088 | - |
| 3.1505 | 2240 | 0.0019 | - |
| 3.1646 | 2250 | 0.0159 | - |
| 3.1786 | 2260 | 0.004 | - |
| 3.1927 | 2270 | 0.0008 | - |
| 3.2068 | 2280 | 0.0031 | - |
| 3.2208 | 2290 | 0.0037 | - |
| 3.2349 | 2300 | 0.0015 | - |
| 3.2489 | 2310 | 0.0041 | - |
| 3.2630 | 2320 | 0.0026 | - |
| 3.2771 | 2330 | 0.0009 | - |
| 3.2911 | 2340 | 0.0022 | - |
| 3.3052 | 2350 | 0.0028 | - |
| 3.3193 | 2360 | 0.0161 | - |
| 3.3333 | 2370 | 0.0076 | - |
| 3.3474 | 2380 | 0.0021 | - |
| 3.3615 | 2390 | 0.0172 | - |
| 3.3755 | 2400 | 0.0292 | - |
| 3.3896 | 2410 | 0.0051 | - |
| 3.4037 | 2420 | 0.0174 | - |
| 3.4177 | 2430 | 0.0081 | - |
| 3.4318 | 2440 | 0.0065 | - |
| 3.4459 | 2450 | 0.0024 | - |
| 3.4599 | 2460 | 0.0094 | - |
| 3.4740 | 2470 | 0.0146 | - |
| 3.4880 | 2480 | 0.004 | - |
| 3.5021 | 2490 | 0.0044 | - |
| 3.5162 | 2500 | 0.0016 | - |
| 3.5302 | 2510 | 0.0032 | - |
| 3.5443 | 2520 | 0.0289 | - |
| 3.5584 | 2530 | 0.0123 | - |
| 3.5724 | 2540 | 0.0055 | - |
| 3.5865 | 2550 | 0.0031 | - |
| 3.6006 | 2560 | 0.0081 | - |
| 3.6146 | 2570 | 0.0042 | - |
| 3.6287 | 2580 | 0.0051 | - |
| 3.6428 | 2590 | 0.0058 | - |
| 3.6568 | 2600 | 0.0017 | - |
| 3.6709 | 2610 | 0.005 | - |
| 3.6850 | 2620 | 0.0015 | - |
| 3.6990 | 2630 | 0.0008 | - |
| 3.7131 | 2640 | 0.0069 | - |
| 3.7271 | 2650 | 0.0022 | - |
| 3.7412 | 2660 | 0.0024 | - |
| 3.7553 | 2670 | 0.0018 | - |
| 3.7693 | 2680 | 0.0031 | - |
| 3.7834 | 2690 | 0.0112 | - |
| 3.7975 | 2700 | 0.0051 | - |
| 3.8115 | 2710 | 0.0024 | - |
| 3.8256 | 2720 | 0.0011 | - |
| 3.8397 | 2730 | 0.0008 | - |
| 3.8537 | 2740 | 0.0035 | - |
| 3.8678 | 2750 | 0.0029 | - |
| 3.8819 | 2760 | 0.0047 | - |
| 3.8959 | 2770 | 0.0208 | - |
| 3.9100 | 2780 | 0.0026 | - |
| 3.9241 | 2790 | 0.0152 | - |
| 3.9381 | 2800 | 0.0021 | - |
| 3.9522 | 2810 | 0.0188 | - |
| 3.9662 | 2820 | 0.0162 | - |
| 3.9803 | 2830 | 0.0009 | - |
| 3.9944 | 2840 | 0.0045 | - |
| 4.0084 | 2850 | 0.0058 | - |
| 4.0225 | 2860 | 0.031 | - |
| 4.0366 | 2870 | 0.0013 | - |
| 4.0506 | 2880 | 0.0021 | - |
| 4.0647 | 2890 | 0.0022 | - |
| 4.0788 | 2900 | 0.008 | - |
| 4.0928 | 2910 | 0.0107 | - |
| 4.1069 | 2920 | 0.0015 | - |
| 4.1210 | 2930 | 0.003 | - |
| 4.1350 | 2940 | 0.0094 | - |
| 4.1491 | 2950 | 0.0013 | - |
| 4.1632 | 2960 | 0.0084 | - |
| 4.1772 | 2970 | 0.0021 | - |
| 4.1913 | 2980 | 0.0068 | - |
| 4.2053 | 2990 | 0.0032 | - |
| 4.2194 | 3000 | 0.0044 | - |
| 4.2335 | 3010 | 0.0037 | - |
| 4.2475 | 3020 | 0.0182 | - |
| 4.2616 | 3030 | 0.0023 | - |
| 4.2757 | 3040 | 0.0019 | - |
| 4.2897 | 3050 | 0.001 | - |
| 4.3038 | 3060 | 0.0149 | - |
| 4.3179 | 3070 | 0.0241 | - |
| 4.3319 | 3080 | 0.0028 | - |
| 4.3460 | 3090 | 0.0104 | - |
| 4.3601 | 3100 | 0.0007 | - |
| 4.3741 | 3110 | 0.0015 | - |
| 4.3882 | 3120 | 0.0023 | - |
| 4.4023 | 3130 | 0.0228 | - |
| 4.4163 | 3140 | 0.0161 | - |
| 4.4304 | 3150 | 0.0151 | - |
| 4.4444 | 3160 | 0.0043 | - |
| 4.4585 | 3170 | 0.0031 | - |
| 4.4726 | 3180 | 0.0041 | - |
| 4.4866 | 3190 | 0.0006 | - |
| 4.5007 | 3200 | 0.005 | - |
| 4.5148 | 3210 | 0.0027 | - |
| 4.5288 | 3220 | 0.0019 | - |
| 4.5429 | 3230 | 0.003 | - |
| 4.5570 | 3240 | 0.0024 | - |
| 4.5710 | 3250 | 0.0167 | - |
| 4.5851 | 3260 | 0.001 | - |
| 4.5992 | 3270 | 0.0022 | - |
| 4.6132 | 3280 | 0.013 | - |
| 4.6273 | 3290 | 0.0095 | - |
| 4.6414 | 3300 | 0.0202 | - |
| 4.6554 | 3310 | 0.0147 | - |
| 4.6695 | 3320 | 0.0009 | - |
| 4.6835 | 3330 | 0.0008 | - |
| 4.6976 | 3340 | 0.009 | - |
| 4.7117 | 3350 | 0.0018 | - |
| 4.7257 | 3360 | 0.0043 | - |
| 4.7398 | 3370 | 0.0014 | - |
| 4.7539 | 3380 | 0.0015 | - |
| 4.7679 | 3390 | 0.0111 | - |
| 4.7820 | 3400 | 0.0028 | - |
| 4.7961 | 3410 | 0.0019 | - |
| 4.8101 | 3420 | 0.0005 | - |
| 4.8242 | 3430 | 0.0102 | - |
| 4.8383 | 3440 | 0.0015 | - |
| 4.8523 | 3450 | 0.0014 | - |
| 4.8664 | 3460 | 0.0007 | - |
| 4.8805 | 3470 | 0.0006 | - |
| 4.8945 | 3480 | 0.0022 | - |
| 4.9086 | 3490 | 0.0034 | - |
| 4.9226 | 3500 | 0.0005 | - |
| 4.9367 | 3510 | 0.0055 | - |
| 4.9508 | 3520 | 0.0013 | - |
| 4.9648 | 3530 | 0.003 | - |
| 4.9789 | 3540 | 0.0105 | - |
| 4.9930 | 3550 | 0.0007 | - |
Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.40.2
- PyTorch: 2.1.2+cu121
- Datasets: 2.16.1
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 11