whisper-medium-pa
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0371
- eval_wer: 12.9712
- eval_runtime: 4735.7351
- eval_samples_per_second: 1.271
- eval_steps_per_second: 0.159
- epoch: 0.2612
- step: 15000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP
Initial Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.0823 | 1.2804 | 1000 | 0.1072 | 28.8516 |
| 0.0501 | 2.5608 | 2000 | 0.0952 | 25.4005 |
| 0.0287 | 3.8412 | 3000 | 0.1008 | 24.5475 |
| 0.0088 | 5.1216 | 4000 | 0.1249 | 24.1288 |
| 0.0046 | 6.4020 | 5000 | 0.1389 | 23.5358 |
| 0.0023 | 7.6825 | 6000 | 0.1535 | 23.5254 |
| 0.0011 | 8.9629 | 7000 | 0.1537 | 23.3668 |
| 0.0001 | 10.2433 | 8000 | 0.1720 | 23.0677 |
| 0.0002 | 11.5237 | 9000 | 0.1789 | 22.7452 |
| 0.0 | 12.8041 | 10000 | 0.1804 | 22.7790 |
Re-Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.067700 | - | 1000 | 0.1072 | 14.635525 |
| 0.055900 | - | 2000 | 0.0952 | 14.542690 |
| 0.050000 | - | 3000 | 0.1008 | 14.295132 |
| 0.043000 | - | 4000 | 0.1249 | 13.520168 |
| 0.043100 | - | 5000 | 0.1389 | 12.971235 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 8