asrith05/slm
Fine-tuned multilingual model for entity extraction tasks.
Model Details
- Base: DeepSeek architecture
- Languages: English, Telugu, Sanskrit
- Task: Entity extraction
- Size: ~416MB
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "asrith05/slm"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
prompt = "Extract entities: John works at Microsoft in Seattle."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training
- Dataset: 30K examples (20K train, 5K val, 5K test)
- Epochs: 1
- Learning rate: 5e-5
- Downloads last month
- 4