speecht5-tunis_finalll

This model is a fine-tuned version of microsoft/speecht5_asr on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2003
  • Wer Ortho: 62.9526
  • Wer: 59.7855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Wer Ortho
1.7381 0.3731 100 1.4437 213.9108 371.3889
0.8437 0.7463 200 0.5686 81.6273 80.5556
0.4461 1.1194 300 0.3668 77.4278 76.1111
0.3753 1.4925 400 0.2760 74.0157 72.7778
0.3416 1.8657 500 0.2392 84.7769 80.8333
0.2656 2.2388 600 0.2138 67.9790 67.7778
0.2706 2.6119 700 0.2085 77.1654 74.7222
0.2509 2.9851 800 0.1995 62.2047 63.0556
0.2314 3.3582 900 0.1949 61.6798 62.5
0.2806 3.7313 1000 0.1951 62.4672 63.3333
0.2254 4.1045 1100 0.1912 68.6111 69.2913
0.2674 4.4776 1200 0.1863 68.6111 69.8163
0.301 4.8507 1300 0.1862 67.5 67.9790
0.2354 5.2239 1400 0.1850 61.1111 59.8425
0.2349 5.5970 1500 0.1851 67.2222 67.7165

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
80
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for asserr/speecht5-tunis_finalll

Finetuned
(2)
this model