Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE-v4")
# Run inference
sentences = [
'معنی و هدف زندگی چیست؟',
'معنی دقیق زندگی چیست؟',
'چه فیلم هایی را به همه توصیه می کنید که تماشا کنند؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
طالع بینی: من یک ماه و کلاه درپوش خورشید است ... این در مورد من چه می گوید؟ |
من یک برج سه گانه (خورشید ، ماه و صعود در برجستگی) هستم که این در مورد من چه می گوید؟ |
چگونه می توانم یک زمین شناس خوب باشم؟ |
چه کاری باید انجام دهم تا یک زمین شناس عالی باشم؟ |
چگونه می توانم نظرات YouTube خود را بخوانم و پیدا کنم؟ |
چگونه می توانم تمام نظرات YouTube خود را ببینم؟ |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 32learning_rate: 2e-05weight_decay: 0.01batch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0386 | 100 | 0.0863 |
| 0.0772 | 200 | 0.0652 |
| 0.1159 | 300 | 0.0595 |
| 0.1545 | 400 | 0.0614 |
| 0.1931 | 500 | 0.05 |
| 0.2317 | 600 | 0.0453 |
| 0.2704 | 700 | 0.0579 |
| 0.3090 | 800 | 0.0542 |
| 0.3476 | 900 | 0.0534 |
| 0.3862 | 1000 | 0.0532 |
| 0.4249 | 1100 | 0.0548 |
| 0.4635 | 1200 | 0.0519 |
| 0.5021 | 1300 | 0.0547 |
| 0.5407 | 1400 | 0.0563 |
| 0.5794 | 1500 | 0.0474 |
| 0.6180 | 1600 | 0.0433 |
| 0.6566 | 1700 | 0.0545 |
| 0.6952 | 1800 | 0.0509 |
| 0.7339 | 1900 | 0.0453 |
| 0.7725 | 2000 | 0.0446 |
| 0.8111 | 2100 | 0.0506 |
| 0.8497 | 2200 | 0.046 |
| 0.8884 | 2300 | 0.0413 |
| 0.9270 | 2400 | 0.149 |
| 0.9656 | 2500 | 0.6993 |
| 1.0039 | 2600 | 1.081 |
| 1.0425 | 2700 | 0.0397 |
| 1.0811 | 2800 | 0.0337 |
| 1.1197 | 2900 | 0.0307 |
| 1.1584 | 3000 | 0.0323 |
| 1.1970 | 3100 | 0.0273 |
| 1.2356 | 3200 | 0.0292 |
| 1.2742 | 3300 | 0.0323 |
| 1.3129 | 3400 | 0.0352 |
| 1.3515 | 3500 | 0.0281 |
| 1.3901 | 3600 | 0.0318 |
| 1.4287 | 3700 | 0.0281 |
| 1.4674 | 3800 | 0.0304 |
| 1.5060 | 3900 | 0.0321 |
| 1.5446 | 4000 | 0.035 |
| 1.5832 | 4100 | 0.0279 |
| 1.6219 | 4200 | 0.0286 |
| 1.6605 | 4300 | 0.0333 |
| 1.6991 | 4400 | 0.0323 |
| 1.7377 | 4500 | 0.0312 |
| 1.7764 | 4600 | 0.0261 |
| 1.8150 | 4700 | 0.0361 |
| 1.8536 | 4800 | 0.0306 |
| 1.8922 | 4900 | 0.028 |
| 1.9309 | 5000 | 0.1226 |
| 1.9695 | 5100 | 0.5625 |
| 2.0077 | 5200 | 0.8337 |
| 2.0463 | 5300 | 0.0273 |
| 2.0850 | 5400 | 0.0242 |
| 2.1236 | 5500 | 0.0236 |
| 2.1622 | 5600 | 0.0237 |
| 2.2008 | 5700 | 0.0197 |
| 2.2395 | 5800 | 0.0217 |
| 2.2781 | 5900 | 0.0244 |
| 2.3167 | 6000 | 0.027 |
| 2.3553 | 6100 | 0.0235 |
| 2.3940 | 6200 | 0.0233 |
| 2.4326 | 6300 | 0.0225 |
| 2.4712 | 6400 | 0.023 |
| 2.5098 | 6500 | 0.023 |
| 2.5485 | 6600 | 0.0243 |
| 2.5871 | 6700 | 0.0215 |
| 2.6257 | 6800 | 0.0236 |
| 2.6643 | 6900 | 0.0234 |
| 2.7030 | 7000 | 0.0239 |
| 2.7416 | 7100 | 0.0248 |
| 2.7802 | 7200 | 0.02 |
| 2.8188 | 7300 | 0.0271 |
| 2.8575 | 7400 | 0.0235 |
| 2.8961 | 7500 | 0.0214 |
| 2.9347 | 7600 | 0.1147 |
| 2.9733 | 7700 | 0.5838 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
sentence-transformers/LaBSE