A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL
Paper
•
2507.18885
•
Published
text
stringlengths 157
7.64M
| meta
dict |
|---|---|
"(* Title: HOL/Algebra/Coset.thy\n Authors: Florian Kammueller, L C Paulson, Stephan Hoh(...TRUNCATED)
| {"path":"Isabelle2024/src/HOL/Algebra/Coset.thy","repo":"Isabelle2024","sha":"1f04909087455c55d370d1(...TRUNCATED)
|
"section ‹Standard Rules›\ntext ‹We define the standard rules here, and prove the relation to (...TRUNCATED)
| {"path":"afp-2025-02-12/thys/Graph_Saturation/StandardRules.thy","repo":"afp-2025-02-12","sha":"55a9(...TRUNCATED)
|
"(* \n Title: The pi-calculus \n Author/Maintainer: Jesper Bengtson (jebe.dk), 2012\n*)\ntheor(...TRUNCATED)
| {"path":"afp-2025-02-12/thys/Pi_Calculus/Strong_Early_Bisim_Pres.thy","repo":"afp-2025-02-12","sha":(...TRUNCATED)
|
"theory Uncertainty_Principle\n imports \"QHLProver.Complex_Matrix\"\nbegin\n\nsection‹Setup›\n(...TRUNCATED)
| {"path":"afp-2025-02-12/thys/Uncertainty_Principle/Uncertainty_Principle.thy","repo":"afp-2025-02-12(...TRUNCATED)
|
"(* Title: HOL/HOLCF/Universal.thy\n Author: Brian Huffman\n*)\n\nsection ‹A universa(...TRUNCATED)
| {"path":"Isabelle2024/src/HOL/HOLCF/Universal.thy","repo":"Isabelle2024","sha":"5f53c7ae070a6ad0081d(...TRUNCATED)
|
"section ‹The Proof System›\n\ntheory OG_Hoare imports OG_Tran begin\n\nprimrec assertions :: \"(...TRUNCATED)
| {"path":"Isabelle2024/src/HOL/Hoare_Parallel/OG_Hoare.thy","repo":"Isabelle2024","sha":"ae755d774145(...TRUNCATED)
|
"(* Title: HOL/Library/Code_Target_Nat.thy\n Author: Florian Haftmann, TU Muenchen\n*)\(...TRUNCATED)
| {"path":"Isabelle2024/src/HOL/Library/Code_Target_Nat.thy","repo":"Isabelle2024","sha":"33af182eacc7(...TRUNCATED)
|
"chapter ‹Arithmetic Constructs›\n\ntext ‹Less genereric syntax, more committed towards embedd(...TRUNCATED)
| {"path":"afp-2025-02-12/thys/Syntax_Independent_Logic/Syntax_Arith.thy","repo":"afp-2025-02-12","sha(...TRUNCATED)
|
"section ‹Partial and total correctness›\n\ntheory Quantum_Hoare\n imports Quantum_Program\nbeg(...TRUNCATED)
| {"path":"afp-2025-02-12/thys/QHLProver/Quantum_Hoare.thy","repo":"afp-2025-02-12","sha":"78603246b6f(...TRUNCATED)
|
"theory Variable_Substitution\n imports\n Abstract_Substitution.Substitution\n \"HOL-Library.(...TRUNCATED)
| {"path":"afp-2025-02-12/thys/Superposition_Calculus/Variable_Substitution.thy","repo":"afp-2025-02-1(...TRUNCATED)
|
Extensively annotated Isabelle source code, suitable for pretraining, about 500M tokens in Qwen3's tokenizer.
Data source: Isabelle/HOL + AFP 2025-02-12. Cases from the PISA benchmark are removed.
Example:
lemma (in group) diff_neutralizes: ✐‹contributor ‹Paulo EmÃlio de Vilhena››
assumes "subgroup H G" "R ∈ rcosets H"
shows "⋀r1 r2. ⟦ r1 ∈ R; r2 ∈ R ⟧ ⟹ r1 ⊗ (inv r2) ∈ H"
proof (-)
(*goal: ‹⋀r1 r2. ⟦r1 ∈ R; r2 ∈ R⟧ ⟹ r1 ⊗ inv r2 ∈ H›*)
fix r1 and r2
assume r1: "r1 ∈ R" and r2: "r2 ∈ R" (*‹(r1::'a) ∈ (R::'a set)› ‹(r2::'a) ∈ (R::'a set)›*)
obtain g where g: "g ∈ carrier G" "R = H #> g"
(*goal: ‹(⋀g. ⟦g ∈ carrier G; R = H #> g⟧ ⟹ thesis) ⟹ thesis›*)
using assms (*‹subgroup (H::'a::type set) G› ‹R ∈ rcosets H›*) unfolding RCOSETS_def
(*goal: ‹(⋀g. ⟦g ∈ carrier G; R = H #> g⟧ ⟹ thesis) ⟹ thesis›*)
by blast
then obtain h1 and h2 where h1: "h1 ∈ H" "r1 = h1 ⊗ g" and h2: "h2 ∈ H" "r2 = h2 ⊗ g"
(*goal: ‹(⋀h1 h2. ⟦h1 ∈ H; r1 = h1 ⊗ g; h2 ∈ H; r2 = h2 ⊗ g⟧ ⟹ thesis) ⟹ thesis›*)
using r1 (*‹(r1::'a) ∈ (R::'a set)›*) r2 (*‹r2 ∈ R›*) unfolding r_coset_def
(*goal: ‹(⋀h1 h2. ⟦h1 ∈ H; r1 = h1 ⊗ g; h2 ∈ H; r2 = h2 ⊗ g⟧ ⟹ thesis) ⟹ thesis›*)
by blast
hence "r1 ⊗ (inv r2) = (h1 ⊗ g) ⊗ ((inv g) ⊗ (inv h2))"
using inv_mult_group (*‹⟦?x ∈ carrier G; ?y ∈ carrier G⟧ ⟹ inv (?x ⊗ ?y) = inv ?y ⊗ inv ?x›*) is_group (*‹Group.group G›*) assms(1) (*‹subgroup H G›*) g(1) (*‹g ∈ carrier G›*) subgroup.mem_carrier (*‹⟦subgroup ?H ?G; ?x ∈ ?H⟧ ⟹ ?x ∈ carrier ?G›*) by fastforce
also (*calculation: ‹r1 ⊗ inv r2 = h1 ⊗ g ⊗ (inv g ⊗ inv h2)›*) have " ... = (h1 ⊗ (g ⊗ inv g) ⊗ inv h2)"
using h1 (*‹(h1::'a) ∈ (H::'a set)› ‹r1 = h1 ⊗ g›*) h2 (*‹h2 ∈ H› ‹r2 = h2 ⊗ g›*) assms(1) (*‹subgroup H G›*) g(1) (*‹g ∈ carrier G›*) inv_closed (*‹?x ∈ carrier G ⟹ inv ?x ∈ carrier G›*) m_closed (*‹⟦?x ∈ carrier G; ?y ∈ carrier G⟧ ⟹ ?x ⊗ ?y ∈ carrier G›*) monoid.m_assoc (*‹⟦Group.monoid ?G; ?x ∈ carrier ?G; ?y ∈ carrier ?G; ?z ∈ carrier ?G⟧ ⟹ ?x ⊗⇘?G⇙ ?y ⊗⇘?G⇙ ?z = ?x ⊗⇘?G⇙ (?y ⊗⇘?G⇙ ?z)›*) monoid_axioms (*‹Group.monoid G›*) subgroup.mem_carrier (*‹⟦subgroup ?H ?G; ?x ∈ ?H⟧ ⟹ ?x ∈ carrier ?G›*) proof (-)
(*goal: ‹⟦h1 ∈ H; r1 = h1 ⊗ g; h2 ∈ H; r2 = h2 ⊗ g; subgroup H G; g ∈ carrier G; ⋀x. x ∈ carrier G ⟹ inv x ∈ carrier G; ⋀x y. ⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ x ⊗ y ∈ carrier G; ⋀G x y z. ⟦Group.monoid G; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G⟧ ⟹ x ⊗⇘G⇙ y ⊗⇘G⇙ z = x ⊗⇘G⇙ (y ⊗⇘G⇙ z); Group.monoid G; ⋀H G x. ⟦subgroup H G; x ∈ H⟧ ⟹ x ∈ carrier G⟧ ⟹ h1 ⊗ g ⊗ (inv g ⊗ inv h2) = h1 ⊗ (g ⊗ inv g) ⊗ inv h2›*)
Types of annotations:
Minilang's pipeline is used to transform composite tactics to minimal units and annotate the transitions of proof states per unit.
Each statement has a 30% probability of being annotated with types, and a further 40% probability of being annotated with the sorts of the type variables.
Please cite me!
@misc{xu2025minimalistprooflanguageneural,
title={A Minimalist Proof Language for Neural Theorem Proving over Isabelle/HOL},
author={Qiyuan Xu and Renxi Wang and Peixin Wang and Haonan Li and Conrad Watt},
year={2025},
eprint={2507.18885},
archivePrefix={arXiv},
primaryClass={cs.PL},
url={https://arxiv.org/abs/2507.18885},
}