Datasets:

Languages:
English
ArXiv:
Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    UnidentifiedImageError
Message:      cannot identify image file <_io.BytesIO object at 0x7f6ba50ee390>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
                  return get_rows(
                         ^^^^^^^^^
                File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
                  return func(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2543, in __iter__
                  for key, example in ex_iterable:
                                      ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2061, in __iter__
                  batch = formatter.format_batch(pa_table)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/formatting/formatting.py", line 472, in format_batch
                  batch = self.python_features_decoder.decode_batch(batch)
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/formatting/formatting.py", line 234, in decode_batch
                  return self.features.decode_batch(batch, token_per_repo_id=self.token_per_repo_id) if self.features else batch
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2161, in decode_batch
                  decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id)
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1419, in decode_nested_example
                  return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) if obj is not None else None
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/image.py", line 190, in decode_example
                  image = PIL.Image.open(bytes_)
                          ^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/PIL/Image.py", line 3498, in open
                  raise UnidentifiedImageError(msg)
              PIL.UnidentifiedImageError: cannot identify image file <_io.BytesIO object at 0x7f6ba50ee390>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

EgoDynamic4D Dataset from AAAI 2026 paper: Understanding Dynamic Scenes in Egocentric 4D Point Clouds

🚀 EgoDynamic4D QA dataset has been released.

This repository hosts the official implementation of EgoDynamic4D, a large-scale egocentric 4D dynamic scene understanding benchmark introduced in our AAAI 2026 paper:

Understanding Dynamic Scenes in Egocentric 4D Point Clouds


About the Dataset

EgoDynamic4D is a question answering (QA) benchmark designed for fine-grained spatio-temporal reasoning in egocentric dynamic scenes.

The dataset includes:

  • Egocentric RGB-D videos
  • Camera poses
  • Globally unique instance masks
  • 4D bounding boxes over time
  • Large-scale QA annotations for dynamic reasoning tasks

The dataset is constructed based on existing egocentric 4D resources, building upon ADT and THUD++. Our main contribution lies in the large-scale, task-driven QA annotations, which enable fine-grained spatio-temporal reasoning in dynamic egocentric scenes.

Please find instructions on Github for usages.

Downloads last month
62

Papers for Dancing-Huggingface/EgoDynamic4D