Dataset Viewer
Auto-converted to Parquet Duplicate
city_id
int64
store_id
int64
management_group_id
int64
first_category_id
int64
second_category_id
int64
third_category_id
int64
product_id
int64
dt
string
sale_amount
float64
hours_sale
list
stock_hour6_22_cnt
int32
hours_stock_status
list
activity_flag
int32
discount
float64
holiday_flag
int32
precpt
float64
avg_temperature
float64
avg_humidity
float64
avg_wind_level
float64
0
0
2
25
62
31
54
2025-04-30
0.9
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.2, 0.1, 0, 0.1, 0.1, 0, 0.1, 0, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
1.4621
20.88
56.32
1.39
0
0
2
25
62
31
54
2025-05-01
2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.3, 0.8, 0.2, 0, 0.1, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0 ]
10
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
1.2773
21.52
57.65
1.63
0
0
2
25
62
31
54
2025-05-02
0.9
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.1, 0, 0.1, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
1.119
21.88
60.03
1.77
0
0
2
25
62
31
54
2025-05-03
1
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0, 0, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
1
1.8706
22.63
61.44
2.32
0
0
2
25
62
31
54
2025-05-04
1.2
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.3, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
9
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
2.1437
21.99
67.06
2.25
0
0
2
25
62
31
54
2025-05-05
1.3
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.1, 0.2, 0.3, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
3.1502
23.13
65.62
2.04
0
0
2
25
62
31
54
2025-05-06
0.7
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0.3, 0, 0, 0.2, 0, 0, 0, 0, 0, 0 ]
3
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 ]
0
1
0
3.887
23.28
68.23
2.14
0
0
2
25
62
31
54
2025-05-07
1.2
[ 0, 0, 0, 0, 0, 0.1, 0, 0.2, 0.1, 0, 0.2, 0, 0, 0.1, 0, 0.1, 0.4, 0, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
3.509
22.72
69.64
1.98
0
0
2
25
62
31
54
2025-05-08
1.5
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.1, 0.5, 0.1, 0.1, 0.1, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.915
0
4.4019
23.55
65.2
2.14
0
0
2
25
62
31
54
2025-05-09
1.4
[ 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0, 0, 0.2, 0.1, 0.1, 0.2, 0.2, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.2321
23.06
64.57
2.16
0
0
2
25
62
31
54
2025-05-10
1.7
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.7, 0.4, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
9
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
0.6076
23.16
64.24
1.5
0
0
2
25
62
31
54
2025-05-11
1.8
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.2, 0.7, 0.2, 0.4, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
1.5087
23.12
67.65
1.73
0
0
2
25
62
31
54
2025-05-12
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0.1, 0, 0, 0, 0.1, 0.3, 0.1, 0.2, 0, 0, 0, 0, 0, 0 ]
4
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 ]
0
1
0
0.7167
23.29
66.75
1.86
0
0
2
25
62
31
54
2025-05-13
0.5
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
2.464
23.53
68.65
1.98
0
0
2
25
62
31
54
2025-05-14
1.1
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.4, 0, 0.1, 0, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
2.1295
23.84
67.2
2.23
0
0
2
25
62
31
54
2025-05-15
0.9
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
2.5737
24.35
71.25
1.84
0
0
2
25
62
31
54
2025-05-16
1.1
[ 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0.5, 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
1.9203
24.47
70.24
1.73
0
0
2
25
62
31
54
2025-05-17
2.4
[ 0, 0, 0, 0, 0, 0, 0, 0.4, 0.2, 0.3, 0.6, 0.4, 0.2, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
1
1.7434
23.9
72.32
2.07
0
0
2
25
62
31
54
2025-05-18
2.1
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.4, 0.6, 0.5, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
1
1.1606
23.11
74.02
1.73
0
0
2
25
62
31
54
2025-05-19
1.5
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.3, 0.3, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1 ]
0
1
0
3.6757
23.41
71.87
2.07
0
0
2
25
62
31
54
2025-05-20
1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.1, 0.1, 0, 0, 0, 0.2, 0.3, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.5199
23.3
74.1
2.34
0
0
2
25
62
31
54
2025-05-21
1.2
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0.1, 0.2, 0.2, 0, 0.1, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.0675
22.12
71.72
2.55
0
0
2
25
62
31
54
2025-05-22
1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.713
21.69
70.06
2.2
0
0
2
25
62
31
54
2025-05-23
1.4
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0.1, 0.2, 0.2, 0, 0.2, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
3.0425
22.46
71.25
1.8
0
0
2
25
62
31
54
2025-05-24
1.1
[ 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.2, 0.1, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
2.2062
22.81
67.09
1.7
0
0
2
25
62
31
54
2025-05-25
1.4
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.3, 0.6, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
10
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
2.1245
23.01
64.16
1.98
0
0
2
25
62
31
54
2025-05-26
0.7
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0.1, 0, 0, 0, 0.3, 0.1, 0.1, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
0.966
0
3.9208
22.91
68.33
1.45
0
0
2
25
62
31
54
2025-05-27
1.1
[ 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0.2, 0.2, 0.2, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
2.5889
23.13
64.43
1.8
0
0
2
25
62
31
54
2025-05-28
0.6
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0.1, 0, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.959
0
1.2838
23.06
69.29
2.07
0
0
2
25
62
31
54
2025-05-29
0.6
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0.1, 0.2, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
2.3156
23.7
64.79
2.07
0
0
2
25
62
31
54
2025-05-30
1.1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.3, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.8354
23.07
69.3
1.73
0
0
2
25
62
31
54
2025-05-31
1.5
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.8, 0.4, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
12
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
3.9337
23.52
71.23
1.73
0
0
2
25
62
31
54
2025-06-01
1.9
[ 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.3, 0.7, 0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
1
7.4153
23.58
71.42
1.91
0
0
2
25
62
31
54
2025-06-02
1.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.8, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
6.553
23.95
75.3
1.95
0
0
2
25
62
31
54
2025-06-03
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.5, 0, 0.2, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
3.7679
24.97
75.47
1.59
0
0
2
25
62
31
54
2025-06-04
0.9
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0.2, 0, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.4571
25.22
74.89
1.73
0
0
2
25
62
31
54
2025-06-05
0.8
[ 0, 0, 0, 0, 0, 0, 0.2, 0, 0.3, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
5.7499
24.87
77.71
1.86
0
0
2
25
62
31
54
2025-06-06
0.7
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.2, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
9.2132
25.46
79.28
1.7
0
0
2
25
62
31
54
2025-06-07
1.6
[ 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0.4, 0.3, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
7.7333
25.78
76.29
1.63
0
0
2
25
62
31
54
2025-06-08
1.5
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.3, 0.2, 0.3, 0.2, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
1
7.0133
25.61
79.29
1.8
0
0
2
25
62
31
54
2025-06-09
0.9
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0, 0.1, 0, 0.1, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
5.8519
26.21
78.61
1.98
0
0
2
25
62
31
54
2025-06-10
0.9
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.2, 0.2, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
5.6635
27.13
82.01
1.93
0
0
2
25
62
31
54
2025-06-11
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0.1, 0.2, 0, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
6.2454
26.76
79.79
2.34
0
0
2
25
62
31
54
2025-06-12
1.1
[ 0, 0, 0, 0, 0, 0, 0.2, 0.1, 0, 0, 0.2, 0.3, 0.1, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
5.8777
27.13
77.21
1.73
0
0
2
25
62
31
54
2025-06-13
0.8
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0.1, 0, 0.3, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
3.0799
27.99
77.64
1.57
0
0
2
25
62
31
54
2025-06-14
2
[ 0, 0, 0, 0, 0.1, 0, 0, 0.2, 0.5, 0.1, 0.6, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
10
[ 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
5.3404
27.39
77.42
1.52
0
0
2
25
62
31
54
2025-06-15
2.1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.4, 0.3, 0.4, 0.2, 0.1, 0, 0.3, 0.1, 0, 0.1, 0, 0, 0, 0, 0 ]
3
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 ]
0
1
1
3.3712
27.86
76.16
1.66
0
0
2
25
62
31
54
2025-06-16
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.1, 0, 0, 0, 0.1, 0.3, 0.1, 0.1, 0, 0, 0, 0, 0, 0 ]
3
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 ]
0
1
0
4.2544
27.91
77.2
1.45
0
0
2
25
62
31
54
2025-06-17
0.8
[ 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0.1, 0.1, 0.1, 0.1, 0, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
2.4861
28.38
76.85
1.57
0
0
2
25
62
31
54
2025-06-18
0.6
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0 ]
0
1
0
5.0382
27.92
79.31
1.8
0
0
2
25
62
31
54
2025-06-19
0.7
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.1, 0, 0, 0.1, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
5.4609
27.57
79.53
1.32
0
0
2
25
62
31
54
2025-06-20
1
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0, 0.2, 0, 0.1, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.3888
27.11
79.38
2
0
0
2
25
62
31
54
2025-06-21
1.9
[ 0, 0, 0, 0, 0.1, 0, 0, 0.3, 0.4, 0.1, 0.6, 0.3, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
9
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
6.6743
27.67
77.96
1.5
0
0
2
25
62
31
54
2025-06-22
2.1
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.6, 0.4, 0.2, 0.3, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0.1, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
0.975
1
5.7928
27.39
78.73
1.52
0
0
2
25
62
31
54
2025-06-23
1.4
[ 0, 0, 0, 0, 0, 0, 0, 0.3, 0.2, 0.2, 0, 0.3, 0.1, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.9744
27.32
78.26
1.98
0
0
2
25
62
31
54
2025-06-24
0.9
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0.2, 0.1, 0, 0.3, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
1.8874
27.95
75.14
1.59
0
0
2
25
62
31
54
2025-06-25
0.9
[ 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0.1, 0.2, 0.1, 0.2, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
0.744
29.29
72.42
1.39
0
0
2
25
62
31
54
2025-06-26
0.7
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0.1, 0.2, 0, 0.1, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
1.0103
30.61
69.56
2.14
0
0
2
25
62
31
54
2025-06-27
1
[ 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.2, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
0.6075
29.8
70.1
2
0
0
2
25
62
31
54
2025-06-28
2
[ 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.1, 0.7, 0.5, 0.2, 0, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
0.3684
29.86
71.01
2.02
0
0
2
25
62
31
54
2025-06-29
1.9
[ 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.4, 1, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
12
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0.903
1
0.8532
29.63
72.13
2.27
0
0
2
25
62
31
54
2025-06-30
0.6
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.3, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
9
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
2.0824
30.14
70.43
2
0
0
2
25
62
31
54
2025-07-01
0.9
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.2, 0.2, 0, 0, 0.1, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0 ]
12
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.923
0
0.5434
30.28
67.38
1.77
0
0
2
25
62
31
54
2025-07-02
1.1
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0.1, 0.1, 0, 0, 0.1, 0, 0.3, 0, 0.3, 0, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
1.1667
30.29
64.82
2.45
0
0
2
25
62
31
54
2025-07-03
1.4
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.4, 0.3, 0.2, 0, 0.2, 0, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.994
0
0.6143
30.84
65.39
1.5
0
0
2
25
62
31
54
2025-07-04
1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.2, 0, 0.1, 0.2, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.965
0
1.2969
30.57
67.38
1.84
0
0
2
25
62
31
54
2025-07-05
2.9
[ 0, 0, 0, 0, 0, 0, 0.3, 0.4, 0.9, 0.8, 0.4, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
13
[ 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.916
1
2.123
30.54
70.11
2.25
0
0
2
25
62
31
54
2025-07-06
2.1
[ 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0.1, 0.4, 0.6, 0.5, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
1
1.6997
30.14
71.49
2.04
0
0
2
25
62
31
54
2025-07-07
1.6
[ 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.3, 0.1, 0.2, 0.1, 0, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.976
0
3.5493
29.5
71.93
1.84
0
0
2
25
62
31
54
2025-07-08
1.5
[ 0, 0, 0, 0, 0, 0, 0.3, 0, 0.2, 0.3, 0.2, 0.2, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
0.965
0
5.3892
28.96
76.49
1.98
0
0
2
25
62
31
54
2025-07-09
1.5
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0.3, 0.2, 0.2, 0.4, 0.1, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
0.993
0
2.4927
28.97
76.11
1.68
0
0
2
25
62
31
54
2025-07-10
1.2
[ 0, 0, 0, 0, 0, 0, 0, 0.3, 0.1, 0.1, 0, 0.2, 0.4, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
4.5693
29.25
77.66
1.98
0
0
2
25
62
31
54
2025-07-11
1.9
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.5, 0.4, 0, 0.2, 0.1, 0.4, 0.2, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
0.987
0
4.6318
29.31
75.71
2.25
0
0
2
25
62
31
54
2025-07-12
3.6
[ 0, 0, 0, 0, 0, 0, 0.3, 0.3, 0.5, 0.9, 1.2, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0.896
1
5.5132
29.25
76.42
2.25
0
0
2
25
62
31
54
2025-07-13
2.8
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 1, 1, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
10
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
3.9916
29.97
72.7
2.59
0
0
2
25
62
31
394
2023-06-05
1.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0.2, 0.1, 0, 0.2, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
2.1464
25.39
0.73
2.94
0
0
2
25
62
31
394
2023-06-06
0.9
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0.2, 0.1, 0, 0.1, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
1.9711
25.45
0.67
2
0
0
2
25
62
31
394
2023-06-07
1.3
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.2, 0, 0.2, 0, 0.2, 0.2, 0, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
1.3085
26.1
0.64
1.88
0
0
2
25
62
31
394
2023-06-08
1
[ 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0, 0.1, 0, 0.1, 0, 0.3, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
3.4188
26.44
0.67
2.38
0
0
2
25
62
31
394
2023-06-09
1.2
[ 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.2, 0.3, 0.2, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
1.6801
26.74
0.66
2.25
0
0
2
25
62
31
394
2023-06-10
1.6
[ 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.4, 0.3, 0.1, 0, 0.1, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
1.4958
26.84
0.67
2.5
0
0
2
25
62
31
394
2023-06-11
3.9
[ 0, 0, 0, 0, 0, 0, 0.1, 0.5, 0.6, 0.7, 0.7, 0.5, 0.6, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
9
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
2.147
26.63
0.68
2.69
0
0
2
25
62
31
394
2023-06-12
0.7
[ 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.1, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
1.1114
26.37
0.7
2.44
0
0
2
25
62
31
394
2023-06-13
1.4
[ 0, 0, 0, 0, 0, 0.1, 0, 0, 0.1, 0.2, 0.1, 0, 0.4, 0.1, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
2.4221
25.52
0.74
2.88
0
0
2
25
62
31
394
2023-06-14
1.6
[ 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0.6, 0.4, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
4.2834
25.96
0.74
2.25
0
0
2
25
62
31
394
2023-06-15
1.3
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0.1, 0.1, 0, 0.1, 0, 0.2, 0.3, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
5.384
27.03
0.52
2
0
0
2
25
62
31
394
2023-06-16
1.7
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.3, 0.3, 0.2, 0.3, 0.1, 0, 0.2, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
1
0
5.5094
26.7
0.63
2.38
0
0
2
25
62
31
394
2023-06-17
4.4
[ 0, 0, 0, 0, 0, 0.1, 0.2, 0.5, 0.6, 0.6, 1.9, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
6.6777
25.51
0.73
2.5
0
0
2
25
62
31
394
2023-06-18
4.5
[ 0, 0, 0, 0, 0, 0, 0.2, 0.3, 1, 1.4, 1.4, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
13
[ 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
7.2278
24.27
0.78
3.25
0
0
2
25
62
31
394
2023-06-19
1.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0, 0.4, 0.3, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
7.0184
24.03
0.88
1.69
0
0
2
25
62
31
394
2023-06-20
1.8
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0.1, 0.4, 0.2, 0.2, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
6.9665
26.73
0.8
2.38
0
0
2
25
62
31
394
2023-06-21
1.7
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0, 0.4, 0, 0, 0.1, 0.5, 0.2, 0.2, 0, 0, 0, 0, 0 ]
3
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 ]
0
1
0
6.3562
27.8
0.7
1.75
0
0
2
25
62
31
394
2023-06-22
5.2
[ 0, 0.1, 0, 0, 0, 0.1, 0.1, 0.3, 1.1, 0.9, 1.1, 0.8, 0.4, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
12
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
7.9033
28.15
0.63
2.44
0
0
2
25
62
31
394
2023-06-23
2.7
[ 0, 0, 0.1, 0, 0, 0, 0, 0.2, 0.6, 0.2, 0.4, 0.7, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
10
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
5.5068
26.21
0.6
1.31
0
0
2
25
62
31
394
2023-06-24
3.6
[ 0, 0, 0, 0, 0, 0.3, 0.2, 0.2, 0.8, 0.5, 1.4, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
1
5.5518
24.12
0.81
2.5
0
0
2
25
62
31
394
2023-06-25
1.5
[ 0, 0, 0, 0.1, 0, 0.1, 0, 0.1, 0.1, 0.2, 0.3, 0, 0.2, 0.3, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1 ]
0
1
0
8.5444
25.07
0.84
2.56
0
0
2
25
62
31
394
2023-06-26
1.9
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.3, 0.2, 0, 0.2, 0.5, 0.1, 0.2, 0.2, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
0
1
0
5.9264
26.68
0.82
2.25
0
0
2
25
62
31
394
2023-06-27
1.7
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.3, 0.2, 0.4, 0, 0, 0.4, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
0.95
0
8.449
28.3
0.8
2.56
0
0
2
25
62
31
394
2023-06-28
1.5
[ 0, 0, 0, 0, 0, 0.1, 0.1, 0.3, 0, 0.1, 0, 0.1, 0.5, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
4
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 ]
0
1
0
6.8227
30.7
0.71
2.88
0
0
2
25
62
31
394
2023-06-29
1.5
[ 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0.4, 0, 0.1, 0.2, 0, 0.1, 0.1, 0.1, 0.3, 0, 0, 0, 0, 0, 0, 0 ]
1
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
0
1
0
7.6988
31.57
0.68
2.81
End of preview. Expand in Data Studio

FreshRetailNet-LT

Dataset Overview

FreshRetailNet-LT is the first large-scale benchmark for censored demand estimation in the fresh retail domain, incorporating approximately 20% organically occurring stockout data. It comprises more than 20K store-product time series of detailed hourly sales data from 1057 stores in 18 major cities, encompassing 576 perishable SKUs with meticulous stockout event annotations. The hourly stock status records unique to this dataset, combined with rich contextual covariates including promotional discounts, precipitation, and other temporal features, enable innovative research beyond existing solutions.

  • [Technical Report](It will be posted later.) - Discover the methodology and technical details behind FreshRetailNet-LT.
  • [Github Repo](It will be posted later.) - Access the complete pipeline used to train and evaluate.

This dataset is ready for commercial/non-commercial use.

Data Fields

Field Type Description
city_id int64 The encoded city id
store_id int64 The encoded store id
management_group_id int64 The encoded management group id
first_category_id int64 The encoded first category id
second_category_id int64 The encoded second category id
third_category_id int64 The encoded third category id
product_id int64 The encoded product id
dt string The date
sale_amount float64 The daily sales amount after global normalization (Multiplied by a specific coefficient)
hours_sale Sequence(float64) The hourly sales amount after global normalization (Multiplied by a specific coefficient)
stock_hour6_22_cnt int32 The number of out-of-stock hours between 6:00 and 22:00
hours_stock_status Sequence(int32) The hourly out-of-stock status
discount float64 The discount rate (1.0 means no discount, 0.9 means 10% off)
holiday_flag int32 Holiday indicator
activity_flag int32 Activity indicator
precpt float64 The total precipitation
avg_temperature float64 The average temperature
avg_humidity float64 The average humidity
avg_wind_level float64 The average wind force

Hierarchical structure

  • warehouse: city_id > store_id
  • product category: management_group_id > first_category_id > second_category_id > third_category_id > product_id

How to use it

You can load the dataset with the following lines of code.

from datasets import load_dataset
dataset = load_dataset("Dingdong-Inc/FreshRetailNet-LT")
print(dataset)
DatasetDict({
    train: Dataset({
        features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'activity_flag', 'discount', 'holiday_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
        num_rows: 7869549
    })
    eval: Dataset({
        features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'activity_flag', 'discount', 'holiday_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
        num_rows: 70000
    })
})

License/Terms of Use

This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0) available at https://creativecommons.org/licenses/by/4.0/legalcode.

Data Developer: Dingdong-Inc

Use Case:

Developers researching latent demand recovery and demand forecasting techniques.

Release Date:

02/02/2026

Data Version

1.0 (02/02/2026)

Intended use

The FreshRetailNet-LT Dataset is intended to be freely used by the community to continue to improve latent demand recovery and demand forecasting techniques. However, for each dataset an user elects to use, the user is responsible for checking if the dataset license is fit for the intended purpose.

Citation

If you find the data useful, please cite:

@article{2026FreshRetailNet-LT,
      title={FreshRetailNet-LT: A Stockout-Annotated Censored Demand Dataset for Latent Demand Recovery and Forecasting in Fresh Retail},
      author={Anonymous Author(s)},
      year={2026},
      eprint={2506.xxxxx},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2506.xxxxx},
}
Downloads last month
84