Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
2508-datasets-evals / README.md
vmkhlv's picture
Update README.md
21fe413 verified
metadata
license: apache-2.0
dataset_info:
  - config_name: cat_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 2921244
        num_examples: 13248
    download_size: 167200
    dataset_size: 2921244
  - config_name: ces_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 3245157
        num_examples: 14256
    download_size: 135814
    dataset_size: 3245157
  - config_name: eus_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 2619840
        num_examples: 9216
    download_size: 95934
    dataset_size: 2619840
  - config_name: fin_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 4683024
        num_examples: 19200
    download_size: 221268
    dataset_size: 4683024
  - config_name: fra_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 1261596
        num_examples: 5184
    download_size: 46933
    dataset_size: 1261596
  - config_name: glg_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 1281960
        num_examples: 5760
    download_size: 54175
    dataset_size: 1281960
  - config_name: nor_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: results
        num_bytes: 4236540
        num_examples: 15936
    download_size: 290910
    dataset_size: 4236540
  - config_name: spa_Latn
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 2065536
        num_examples: 9216
    download_size: 98706
    dataset_size: 2065536
  - config_name: ukr_Cyrl
    features:
      - name: corpus
        dtype: string
      - name: category
        dtype: string
      - name: dataset
        dtype: string
      - name: task
        dtype: string
      - name: prompt
        dtype: string
      - name: model
        dtype: string
      - name: ckpt_num
        dtype: int64
      - name: score
        dtype: float64
    splits:
      - name: results
        num_bytes: 1056612
        num_examples: 4032
    download_size: 40782
    dataset_size: 1056612
configs:
  - config_name: cat_Latn
    data_files:
      - split: results
        path: cat_Latn/results-*
  - config_name: ces_Latn
    data_files:
      - split: results
        path: ces_Latn/results-*
  - config_name: eus_Latn
    data_files:
      - split: results
        path: eus_Latn/results-*
  - config_name: fin_Latn
    data_files:
      - split: results
        path: fin_Latn/results-*
  - config_name: fra_Latn
    data_files:
      - split: results
        path: fra_Latn/results-*
  - config_name: glg_Latn
    data_files:
      - split: results
        path: glg_Latn/results-*
  - config_name: nor_Latn
    data_files:
      - split: results
        path: nor_Latn/results-*
  - config_name: spa_Latn
    data_files:
      - split: results
        path: spa_Latn/results-*
  - config_name: ukr_Cyrl
    data_files:
      - split: results
        path: ukr_Cyrl/results-*
language:
  - es
  - fr
  - cs
  - uk
  - fi
  - ca
  - nb
  - nn
  - gl
  - eu

HPLT 3.0: Details on Corpus Comparison Results

Dataset Description

This dataset contains fine-grained results from our HPLT 3.0 release evaluations comparing the new HPLT 3.0 corpora with the previous HPLT 2.0 version, FineWeb2, and MADLAD-400. We pretrain 2.2B Llama-style decoder models on 100B tokens for each selected language and evaluate them using HPLT-E, a multilingual evaluation framework for comprehensive multi-prompt k-shot evaluation across 124 tasks and 500+ prompts in nine typologically diverse languages: Spanish (spa_Latn), French (fra_Latn), Czech (ces_Latn), Ukrainian (ukr_Cyrl), Finnish (fin_Latn), Catalan (cat_Latn), Galician (glg_Latn), Basque (eus_Latn), and Norwegian (Bokmål and Nynorsk; nor_Latn).

Please find more details in our paper and GitHub repository.

Uses

This dataset is intended for reproducibility and research purposes. Find an example on how to access the results:

from datasets import load_dataset

dataset = load_dataset("HPLT/2508-datasets-evals", "spa_Latn", split="results").to_pandas()

Dataset Structure

Dataset Instances

Each dataset instance looks as follows:

{
  'corpus': 'MADLAD-400 1.0',
  'category': 'Language-specific & world knowledge',
  'dataset': 'global_mmlu_spanish',
  'task': 'global_mmlu_spanish_p0',
  'prompt': '{{question.strip()}}\nA. {{option_a}}\nB. {{option_b}}\nC. {{option_c}}\nD. {{option_d}}\nRespuesta:',
  'model': '69B',
  'ckpt_num': 33000,
  'score': 22.974
}

Dataset Fields

  • corpus: corpus name (HPLT 2.0, MADLAD-400 1.0, FineWeb2.1.0, HPLT 3.0)
  • category: task category
  • dataset: evaluation dataset name
  • task: evaluation task (refers to a specific prompt)
  • prompt: prompt used for evaluation
  • model: number of pretraining tokens (B)
  • ckpt_num: number identifier for model
  • score: standard metric performance score

Cite Us

@article{oepen2025hplt,
  title={HPLT\~{} 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono-and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models},
  author={Oepen, Stephan and Arefev, Nikolay and Aulamo, Mikko and Ba{\~n}{\'o}n, Marta and Buljan, Maja and Burchell, Laurie and Charpentier, Lucas and Chen, Pinzhen and Fedorova, Mariya and de Gibert, Ona and others},
  journal={arXiv preprint arXiv:2511.01066},
  year={2025}
}

Contact Us