Dataset Viewer
Auto-converted to Parquet Duplicate
id
string
status
string
inserted_at
timestamp[us]
updated_at
timestamp[us]
_server_id
string
audio
dict
transcription_originale
string
transcription_corrigee
string
filename
string
annotator_info
string
validation_decision.responses
list
validation_decision.responses.users
list
validation_decision.responses.status
list
validation_comments.responses
list
validation_comments.responses.users
list
validation_comments.responses.status
list
c8d7658b-769a-4090-aa6d-c6370aba33da
completed
2025-12-22T13:47:49.774000
2025-12-22T13:48:59.094000
f81c941b-f278-45ac-8f74-7442a838c394
{"value":"data:audio/wav;base64,UklGRnRcHABXQVZFZm10IBAAAAABAAIAIlYAAIhYAQAEABAAZGF0YVBcHADX/df9fv1+(...TRUNCATED)
"تايشي دوله وهنا غاد يعطيوا الاختيار اما يبقى في اليابا(...TRUNCATED)
"تايشي دوله وهنا غاد يعطيوا الاختيار اما يبقى في اليابا(...TRUNCATED)
chunk62.wav
User One (user1) (annotator)
[ "approuvé" ]
[ "9b9a7a09-de49-4962-8e08-2badf6591f46" ]
[ "submitted" ]
[ null ]
[ "9b9a7a09-de49-4962-8e08-2badf6591f46" ]
[ "submitted" ]

Dataset Card for TestAudio

This dataset has been created with Argilla. As shown in the sections below, this dataset can be loaded into your Argilla server as explained in Load with Argilla, or used directly with the datasets library in Load with datasets.

Using this dataset with Argilla

To load with Argilla, you'll just need to install Argilla as pip install argilla --upgrade and then use the following code:

import argilla as rg

ds = rg.Dataset.from_hub("HafssaRabah/TestAudio", settings="auto")

This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation.

Using this dataset with datasets

To load the records of this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code:

from datasets import load_dataset

ds = load_dataset("HafssaRabah/TestAudio")

This will only load the records of the dataset, but not the Argilla settings.

Dataset Structure

This dataset repo contains:

  • Dataset records in a format compatible with HuggingFace datasets. These records will be loaded automatically when using rg.Dataset.from_hub and can be loaded independently using the datasets library via load_dataset.
  • The annotation guidelines that have been used for building and curating the dataset, if they've been defined in Argilla.
  • A dataset configuration folder conforming to the Argilla dataset format in .argilla.

The dataset is created in Argilla with: fields, questions, suggestions, metadata, vectors, and guidelines.

Fields

The fields are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset.

Field Name Title Type Required
audio Audio custom True
transcription_originale Transcription originale text True
transcription_corrigee Transcription corrigée par l'annotateur text True
filename Nom du fichier text False
annotator_info Information annotateur text False

Questions

The questions are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.

Question Name Title Type Required Description Values/Labels
validation_decision ✅ Décision de validation label_selection True Approuvez-vous la transcription corrigée? ['approuvé', 'à réviser']
validation_comments 💬 Commentaires de validation text False Ajoutez vos remarques ou corrections supplémentaires N/A

Data Splits

The dataset contains a single split, which is train.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation guidelines

🎯 Instructions de validation

Étapes à suivre :

  1. 🎧 Écoutez l'audio : Vérifiez la qualité audio
  2. 📝 Comparez les transcriptions : Lisez l'originale ET la corrigée
  3. ✅ Donnez votre décision : Approuvé / À réviser
  4. 💬 Commentez si nécessaire : Ajoutez des remarques

Critères de validation :

  • Approuvé : La transcription corrigée est exacte et validée
  • ⚠️ À réviser : Nécessite des modifications mineures

Merci pour votre travail de validation ! 🙏

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]

Downloads last month
18