NLI4PR / README.md
araag2's picture
Update README.md
dbce64c verified
metadata
dataset_info:
  - config_name: conversational_medical
    features:
      - name: id
        dtype: int64
      - name: prompt
        list:
          - name: role
            dtype: string
          - name: content
            dtype: string
      - name: completion
        list:
          - name: role
            dtype: string
          - name: content
            dtype: string
      - name: Label
        dtype: string
    splits:
      - name: train
        num_bytes: 12239188
        num_examples: 4904
      - name: dev
        num_bytes: 1277389
        num_examples: 525
      - name: test
        num_bytes: 3980928
        num_examples: 1578
    download_size: 6339380
    dataset_size: 17497505
  - config_name: conversational_patient
    features:
      - name: id
        dtype: int64
      - name: prompt
        list:
          - name: role
            dtype: string
          - name: content
            dtype: string
      - name: completion
        list:
          - name: role
            dtype: string
          - name: content
            dtype: string
      - name: Label
        dtype: string
    splits:
      - name: train
        num_bytes: 15221480
        num_examples: 4904
      - name: dev
        num_bytes: 1597949
        num_examples: 525
      - name: test
        num_bytes: 4920175
        num_examples: 1578
    download_size: 8521486
    dataset_size: 21739604
  - config_name: processed-medical
    features:
      - name: id
        dtype: int64
      - name: topic_id
        dtype: int64
      - name: Description_Medical-Language
        dtype: string
      - name: CTR_Context
        dtype: string
      - name: CTR_Title
        dtype: string
      - name: CTR_id
        dtype: string
      - name: Label
        dtype: string
    splits:
      - name: train
        num_bytes: 12842220
        num_examples: 4904
      - name: dev
        num_bytes: 1334940
        num_examples: 525
      - name: test
        num_bytes: 4203085
        num_examples: 1578
    download_size: 6690961
    dataset_size: 18380245
  - config_name: processed-patient
    features:
      - name: id
        dtype: int64
      - name: topic_id
        dtype: int64
      - name: Description_Patient-Language
        dtype: string
      - name: CTR_Context
        dtype: string
      - name: CTR_Title
        dtype: string
      - name: CTR_id
        dtype: string
      - name: Label
        dtype: string
    splits:
      - name: train
        num_bytes: 12824417
        num_examples: 4904
      - name: dev
        num_bytes: 1334300
        num_examples: 525
      - name: test
        num_bytes: 4179550
        num_examples: 1578
    download_size: 6696616
    dataset_size: 18338267
  - config_name: source
    features:
      - name: id
        dtype: int64
      - name: topic_id
        dtype: int64
      - name: statement_medical
        dtype: string
      - name: statement_pol
        dtype: string
      - name: premise
        dtype: string
      - name: NCT_title
        dtype: string
      - name: NCT_id
        dtype: string
      - name: label
        dtype: string
    splits:
      - name: train
        num_bytes: 15799992
        num_examples: 4904
      - name: dev
        num_bytes: 1652875
        num_examples: 525
      - name: test
        num_bytes: 5134442
        num_examples: 1578
    download_size: 6841482
    dataset_size: 22587309
configs:
  - config_name: conversational_medical
    data_files:
      - split: train
        path: conversational_medical/train-*
      - split: dev
        path: conversational_medical/dev-*
      - split: test
        path: conversational_medical/test-*
  - config_name: conversational_patient
    data_files:
      - split: train
        path: conversational_patient/train-*
      - split: dev
        path: conversational_patient/dev-*
      - split: test
        path: conversational_patient/test-*
  - config_name: processed-medical
    data_files:
      - split: train
        path: processed-medical/train-*
      - split: dev
        path: processed-medical/dev-*
      - split: test
        path: processed-medical/test-*
  - config_name: processed-patient
    data_files:
      - split: train
        path: processed-patient/train-*
      - split: dev
        path: processed-patient/dev-*
      - split: test
        path: processed-patient/test-*
  - config_name: source
    data_files:
      - split: train
        path: source/train-*
      - split: dev
        path: source/dev-*
      - split: test
        path: source/test-*
license: cc-by-sa-4.0
task_categories:
  - text-classification
language:
  - en
tags:
  - medical
pretty_name: NLI4PR
size_categories:
  - 10K<n<100K

Natural Language Inference for Patient Recruitment (NLI4PR)

Dataset Description

Links
Homepage: Github.io
Repository: Github
Paper: arXiv
Contact (Original Authors): Mathilde Aguiar (mathilde.aguiar@lisn.fr)
Contact (Curator): Artur Guimarães (artur.guimas@gmail.com)

Dataset Summary

MedQA is a large-scale multiple-choice question-answering dataset designed to mimic the style of professional medical board exams, particularly the USMLE (United States Medical Licensing Examination). Introduced by Jin et al. in 2020 under the title “What Disease Does This Patient Have? A Large‑scale Open‑Domain Question Answering Dataset from Medical Exams”, the dataset supports open-domain QA via retrieval from medical textbooks

Data Instances

Source Format

{
        "id": "5088",
        "topic_id": "39",
        "statement_medical": "A 55-year-old white woman comes for a routine checkup.  She has no significant medical history and does not use tobacco, alcohol, or illicit drugs.  The patient's only medication is an over-the-counter multivitamin.  Family history is notable for a hip fracture in her mother.  Blood pressure is 130\/80 mm Hg and pulse is 112\/min. She has occasional back pain and lives a sedentary lifestyle with the BMI of 24 Kg\/m2. Plain X-ray of the spine shows mild compression fracture at the level of T10. X-ray absorptiometry studies demonstrate abnormally low bone density in the lumbar vertebrae and T-score values below -2.5, which confirms the diagnosis of osteoporosis.",
        "statement_pol": "I'm a 55-year-old white woman and I recently visited my family doctor. I don't smoke anything or drink. I don't have any remarkable medical history. I only use over-the-counter multivitamins to keep myself fresh and energized. My mom had a hip fracture. The doctor took my blood pressure and it was 130\/80 and my pulse was 112\/min. I have annoying back pain from time to time and to be honest I don't exercise much or move much. My BMI is 24. I did a spine X-ray a while ago and my doctor showed me that I have a fracture on one of my vertebrae. I also have a low bone density in my lumbar vertebrae and T-score values below -2.5. The doctor diagnosed me with osteoporosis.",
        "premise": "Inclusion Criteria:\n\n          -  Postmenopausal women and men referred for bone density examination.\n\n        Exclusion Criteria:\n\n          -  Patients unable to sign consent for participation.\nNo condition on gender to be admitted to the trial.\nAccepts Healthy Volunteers\nSubject must be at least 20 Years old.\nSubject must be at most 90 Years",
        "NCT_title": "Bindex Ultrasonometer for Osteoporosis Diagnostics",
        "NCT_id": "NCT01935232",
        "label": "Contradiction"
}

Data Fields

Source Format

TO:DO

Data Splits

TO:DO

Additional Information

Dataset Curators

Original Paper

  • Mathilde Aguiar (mathilde.aguiar@lisn.fr) - Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique
  • Pierre Zweigenbaum - Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique
  • Nona Naderi - Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique

Huggingface Curator

Licensing Information

CC BY-SA 4.0

Citation Information

  @misc{aguiar2025ieligiblenaturallanguage,
        title={Am I eligible? Natural Language Inference for Clinical Trial Patient Recruitment: the Patient's Point of View}, 
        author={Mathilde Aguiar and Pierre Zweigenbaum and Nona Naderi},
        year={2025},
        eprint={2503.15718},
        archivePrefix={arXiv},
        primaryClass={cs.CL},
        url={https://arxiv.org/abs/2503.15718}, 
  }

10.18653/v1/2025.cl4health-1.21

Contributions

Thanks to araag2 for adding this dataset.