Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
350
350
flow_rate
float32
33
300
nozzle_tip_x
int32
350
676
nozzle_tip_y
int32
894
1.18k
100
647
901
52
412
1,027
74
663
894
188
676
932
89
647
901
162
350
1,145
149
500
1,177
141
654
906
74
676
932
133
676
932
208
527
1,154
88
512
1,120
59
650
940
238
650
940
126
626
896
54
512
1,120
133
500
1,177
70
663
894
112
500
1,177
42
654
906
149
663
894
66
634
895
188
412
1,027
283
663
894
70
663
894
224
654
906
168
650
940
149
647
901
105
663
894
47
663
894
149
500
1,177
70
500
1,177
66
654
906
70
663
894
89
663
894
100
512
1,120
39
663
894
94
663
894
162
522
1,150
112
663
894
84
500
1,177
212
500
1,177
35
654
906
141
654
906
42
350
1,145
149
663
894
94
647
901
300
522
1,150
84
650
940
238
634
895
300
663
894
300
412
1,027
141
500
1,177
35
654
906
48
512
1,120
33
663
894
33
676
932
39
647
901
33
522
1,150
133
500
1,177
235
527
1,154
62
647
901
35
663
894
61
522
1,150
39
663
894
33
519
1,144
89
372
1,149
37
522
1,150
52
634
895
70
626
896
238
654
906
54
350
1,145
35
634
895
89
500
1,177
100
522
1,150
212
663
894
89
647
901
52
634
895
127
522
1,150
300
500
1,177
33
626
896
35
663
894
39
500
1,177
105
647
901
88
522
1,150
84
663
894
66
663
894
89
663
894
84
634
895
37
350
1,145
178
634
895
100
519
1,144
37
663
894
141
654
906
141
654
906
94
634
895
88
350
1,145
238
676
932
235
528
1,130
39
500
1,177
End of preview. Expand in Data Studio

3D Printing Nozzle Images Dataset

Dataset Summary

  • Task: Vision-based flow rate estimation and extrusion quality assessment
  • Domain: Additive Manufacturing / 3D Printing
  • Data Type: RGB images with numerical annotations
  • Total Samples: 4,048 images
    • Training: 3,407 samples
    • Validation: 331 samples
    • Test: 310 samples

Supported Tasks

  1. Flow Rate Regression: Predict the flow rate percentage from camera images of the printing process
  2. Extrusion Quality Classification: Classify prints as under-extruded (<90%), good extrusion (90-110%), or over-extruded (>110%)
  3. Vision-Language Modeling: Generate natural language descriptions of print quality from images
  4. Visual Question Answering: Answer questions about print parameters and quality from images

Dataset Structure

Data Fields

Each sample contains:

  • img_path (string): Filename of the camera image
  • flow_rate (float): Flow rate percentage value (ranging from ~39% to ~265%)
  • nozzle_tip_x (int): X-coordinate of nozzle tip position in pixels
  • nozzle_tip_y (int): Y-coordinate of nozzle tip position in pixels

Data Splits

Split Samples Percentage
Train 3,407 84.2%
Validation 331 8.2%
Test 310 7.6%
Total 4,048 100%

Qualitative Descriptions

The dataset includes JSON template files for generating natural language descriptions:

  • general_statements.json: General observations about the 3D printing nozzle and process
  • qual_good_extrusion.json: Descriptions of good extrusion quality (flow rate 90-110%)
  • qual_under_extrusion.json: Descriptions of under-extrusion issues (flow rate < 90%)
  • qual_over_extrusion.json: Descriptions of over-extrusion issues (flow rate > 110%)
  • quant_templates.json: Templates for stating quantitative flow rate values

These templates enable synthetic generation of diverse natural language annotations for vision-language training.

Usage

Loading the Dataset

from datasets import load_dataset

# Load the full dataset
dataset = load_dataset("cemag/tl-caxton")

# Access individual splits
train_data = dataset['train']
val_data = dataset['validation']
test_data = dataset['test']

# Example: Access a sample
sample = train_data[0]
print(f"Flow rate: {sample['flow_rate']}%")
print(f"Nozzle position: ({sample['nozzle_tip_x']}, {sample['nozzle_tip_y']})")

Using with PyTorch

from torch.utils.data import DataLoader
from PIL import Image
import os

class CIPHERDataset:
    def __init__(self, dataset, image_dir, transform=None):
        self.dataset = dataset
        self.image_dir = image_dir
        self.transform = transform
    
    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        sample = self.dataset[idx]
        img_path = os.path.join(self.image_dir, sample['img_path'])
        image = Image.open(img_path).convert('RGB')
        
        if self.transform:
            image = self.transform(image)
        
        return {
            'image': image,
            'flow_rate': sample['flow_rate'],
            'nozzle_tip': (sample['nozzle_tip_x'], sample['nozzle_tip_y'])
        }

# Create dataset and dataloader
train_dataset = CIPHERDataset(train_data, 'images/', transform=your_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

Vision-Language Training

from data_utils import synthesize_answer, format_data

# Generate a natural language description for a sample
sample = train_data[0]
description = synthesize_answer(sample, general=True, quant=True, qual=True)
print(description)

# Example output:
# "This is the nozzle of a 3D printer. The observed flow rate is approximately 
#  100%. Good extrusion occurs when a 3D printer delivers the exact amount of 
#  filament needed, resulting in strong, accurate, and visually appealing prints."

Citation

If you use this dataset in your research, please cite:

@dataset{tl_caxton,
  title={tl-Caxton: 3D Printing Quality Assessment Dataset},
  author={cemag},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/cemag/tl-caxton}}
}
@article{MargadjiPattinson2025HybridReasoning,
  title   = {Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing},
  author  = {Margadji, Christos and Pattinson, Sebastian W.},
  year    = {2025},
  note    = {arXiv:2506.08462},
  url     = {https://arxiv.org/abs/2506.08462}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository or email at cm2161@cam.ac.uk

Downloads last month
119