Search is not available for this dataset
image
imagewidth (px) 350
350
| flow_rate
float32 33
300
| nozzle_tip_x
int32 350
676
| nozzle_tip_y
int32 894
1.18k
|
|---|---|---|---|
100
| 647
| 901
|
|
52
| 412
| 1,027
|
|
74
| 663
| 894
|
|
188
| 676
| 932
|
|
89
| 647
| 901
|
|
162
| 350
| 1,145
|
|
149
| 500
| 1,177
|
|
141
| 654
| 906
|
|
74
| 676
| 932
|
|
133
| 676
| 932
|
|
208
| 527
| 1,154
|
|
88
| 512
| 1,120
|
|
59
| 650
| 940
|
|
238
| 650
| 940
|
|
126
| 626
| 896
|
|
54
| 512
| 1,120
|
|
133
| 500
| 1,177
|
|
70
| 663
| 894
|
|
112
| 500
| 1,177
|
|
42
| 654
| 906
|
|
149
| 663
| 894
|
|
66
| 634
| 895
|
|
188
| 412
| 1,027
|
|
283
| 663
| 894
|
|
70
| 663
| 894
|
|
224
| 654
| 906
|
|
168
| 650
| 940
|
|
149
| 647
| 901
|
|
105
| 663
| 894
|
|
47
| 663
| 894
|
|
149
| 500
| 1,177
|
|
70
| 500
| 1,177
|
|
66
| 654
| 906
|
|
70
| 663
| 894
|
|
89
| 663
| 894
|
|
100
| 512
| 1,120
|
|
39
| 663
| 894
|
|
94
| 663
| 894
|
|
162
| 522
| 1,150
|
|
112
| 663
| 894
|
|
84
| 500
| 1,177
|
|
212
| 500
| 1,177
|
|
35
| 654
| 906
|
|
141
| 654
| 906
|
|
42
| 350
| 1,145
|
|
149
| 663
| 894
|
|
94
| 647
| 901
|
|
300
| 522
| 1,150
|
|
84
| 650
| 940
|
|
238
| 634
| 895
|
|
300
| 663
| 894
|
|
300
| 412
| 1,027
|
|
141
| 500
| 1,177
|
|
35
| 654
| 906
|
|
48
| 512
| 1,120
|
|
33
| 663
| 894
|
|
33
| 676
| 932
|
|
39
| 647
| 901
|
|
33
| 522
| 1,150
|
|
133
| 500
| 1,177
|
|
235
| 527
| 1,154
|
|
62
| 647
| 901
|
|
35
| 663
| 894
|
|
61
| 522
| 1,150
|
|
39
| 663
| 894
|
|
33
| 519
| 1,144
|
|
89
| 372
| 1,149
|
|
37
| 522
| 1,150
|
|
52
| 634
| 895
|
|
70
| 626
| 896
|
|
238
| 654
| 906
|
|
54
| 350
| 1,145
|
|
35
| 634
| 895
|
|
89
| 500
| 1,177
|
|
100
| 522
| 1,150
|
|
212
| 663
| 894
|
|
89
| 647
| 901
|
|
52
| 634
| 895
|
|
127
| 522
| 1,150
|
|
300
| 500
| 1,177
|
|
33
| 626
| 896
|
|
35
| 663
| 894
|
|
39
| 500
| 1,177
|
|
105
| 647
| 901
|
|
88
| 522
| 1,150
|
|
84
| 663
| 894
|
|
66
| 663
| 894
|
|
89
| 663
| 894
|
|
84
| 634
| 895
|
|
37
| 350
| 1,145
|
|
178
| 634
| 895
|
|
100
| 519
| 1,144
|
|
37
| 663
| 894
|
|
141
| 654
| 906
|
|
141
| 654
| 906
|
|
94
| 634
| 895
|
|
88
| 350
| 1,145
|
|
238
| 676
| 932
|
|
235
| 528
| 1,130
|
|
39
| 500
| 1,177
|
End of preview. Expand
in Data Studio
3D Printing Nozzle Images Dataset
Dataset Summary
- Task: Vision-based flow rate estimation and extrusion quality assessment
- Domain: Additive Manufacturing / 3D Printing
- Data Type: RGB images with numerical annotations
- Total Samples: 4,048 images
- Training: 3,407 samples
- Validation: 331 samples
- Test: 310 samples
Supported Tasks
- Flow Rate Regression: Predict the flow rate percentage from camera images of the printing process
- Extrusion Quality Classification: Classify prints as under-extruded (<90%), good extrusion (90-110%), or over-extruded (>110%)
- Vision-Language Modeling: Generate natural language descriptions of print quality from images
- Visual Question Answering: Answer questions about print parameters and quality from images
Dataset Structure
Data Fields
Each sample contains:
img_path(string): Filename of the camera imageflow_rate(float): Flow rate percentage value (ranging from ~39% to ~265%)nozzle_tip_x(int): X-coordinate of nozzle tip position in pixelsnozzle_tip_y(int): Y-coordinate of nozzle tip position in pixels
Data Splits
| Split | Samples | Percentage |
|---|---|---|
| Train | 3,407 | 84.2% |
| Validation | 331 | 8.2% |
| Test | 310 | 7.6% |
| Total | 4,048 | 100% |
Qualitative Descriptions
The dataset includes JSON template files for generating natural language descriptions:
general_statements.json: General observations about the 3D printing nozzle and processqual_good_extrusion.json: Descriptions of good extrusion quality (flow rate 90-110%)qual_under_extrusion.json: Descriptions of under-extrusion issues (flow rate < 90%)qual_over_extrusion.json: Descriptions of over-extrusion issues (flow rate > 110%)quant_templates.json: Templates for stating quantitative flow rate values
These templates enable synthetic generation of diverse natural language annotations for vision-language training.
Usage
Loading the Dataset
from datasets import load_dataset
# Load the full dataset
dataset = load_dataset("cemag/tl-caxton")
# Access individual splits
train_data = dataset['train']
val_data = dataset['validation']
test_data = dataset['test']
# Example: Access a sample
sample = train_data[0]
print(f"Flow rate: {sample['flow_rate']}%")
print(f"Nozzle position: ({sample['nozzle_tip_x']}, {sample['nozzle_tip_y']})")
Using with PyTorch
from torch.utils.data import DataLoader
from PIL import Image
import os
class CIPHERDataset:
def __init__(self, dataset, image_dir, transform=None):
self.dataset = dataset
self.image_dir = image_dir
self.transform = transform
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
sample = self.dataset[idx]
img_path = os.path.join(self.image_dir, sample['img_path'])
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return {
'image': image,
'flow_rate': sample['flow_rate'],
'nozzle_tip': (sample['nozzle_tip_x'], sample['nozzle_tip_y'])
}
# Create dataset and dataloader
train_dataset = CIPHERDataset(train_data, 'images/', transform=your_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
Vision-Language Training
from data_utils import synthesize_answer, format_data
# Generate a natural language description for a sample
sample = train_data[0]
description = synthesize_answer(sample, general=True, quant=True, qual=True)
print(description)
# Example output:
# "This is the nozzle of a 3D printer. The observed flow rate is approximately
# 100%. Good extrusion occurs when a 3D printer delivers the exact amount of
# filament needed, resulting in strong, accurate, and visually appealing prints."
Citation
If you use this dataset in your research, please cite:
@dataset{tl_caxton,
title={tl-Caxton: 3D Printing Quality Assessment Dataset},
author={cemag},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/cemag/tl-caxton}}
}
@article{MargadjiPattinson2025HybridReasoning,
title = {Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing},
author = {Margadji, Christos and Pattinson, Sebastian W.},
year = {2025},
note = {arXiv:2506.08462},
url = {https://arxiv.org/abs/2506.08462}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository or email at cm2161@cam.ac.uk
- Downloads last month
- 119