File size: 4,949 Bytes
ebec3db
b6a0ef2
ebec3db
 
 
 
 
 
 
 
 
b6a0ef2
 
 
 
 
 
 
 
ebec3db
 
 
 
 
 
 
 
 
ca11b91
ebec3db
 
 
 
 
 
 
b6a0ef2
ebec3db
20bbdb7
 
 
9a4c6c9
ebec3db
 
9a4c6c9
ebec3db
18aa2df
9a4c6c9
fe61e14
 
20bbdb7
9a4c6c9
 
fe61e14
 
 
9a4c6c9
fe61e14
 
 
 
 
 
 
20bbdb7
9a4c6c9
fe61e14
 
 
 
b6a0ef2
fe61e14
 
 
 
 
b6a0ef2
9a4c6c9
fe61e14
 
20bbdb7
fe61e14
 
 
786c853
be1ce11
b6a0ef2
be1ce11
 
 
 
fe61e14
b6a0ef2
 
be1ce11
 
786c853
 
fe61e14
 
786c853
fe61e14
9a4c6c9
 
ebec3db
 
18aa2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a4c6c9
ebec3db
9a4c6c9
ebec3db
9a4c6c9
 
 
b6a0ef2
9a4c6c9
 
 
 
 
20bbdb7
9a4c6c9
 
 
ebec3db
 
 
9a4c6c9
ebec3db
20bbdb7
 
ebec3db
a76e19f
 
 
 
20bbdb7
 
a76e19f
ebec3db
b6a0ef2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
# Data-files config (Parquet-only)
configs:
- config_name: basic
  data_files:
  - split: test
    path:
      - "basic/test-*.parquet"
      - "basic/test.parquet"
  default: true

- config_name: advanced
  data_files:
  - split: test
    path:
      - "advanced/test-*.parquet"
      - "advanced/test.parquet"

pretty_name: "Gametime"
tags:
  - audio
  - speech
  - tts
  - asr
  - benchmark
task_categories:
  - automatic-speech-recognition
  - text-to-speech
  - audio-to-audio
language:
  - en
license: cc-by-4.0
size_categories:
  - n<100K
---

# Gametime Benchmark

The **Gametime** dataset provides lightweight, streaming-friendly splits for TTS/ASR/SpokenLM prototyping.  
For full details, please refer to the paper:  
πŸ‘‰ [**Game-Time: Evaluating Temporal Dynamics in Spoken Language Models**](https://arxiv.org/abs/2509.26388)

---

## πŸ“¦ Download Options

### 1️⃣ Recommended β€” Full ZIP Download

If you prefer the original folder layout you can download one of the ZIPs packaged in `gametime/download/`. There are two kinds available in this repository:

* `gametime/download/basic_instructions.zip` β€” unpacks to:

```
basic_instructions/
β”œβ”€β”€ text/
β”‚   β”œβ”€β”€ *-dataset.json         # per-dataset JSON manifest(s)
β”œβ”€β”€ audios/
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   └── test/*.wav
β”œβ”€β”€ alignments/                 # per-audio alignment files 
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   β”œβ”€β”€ <stem>.jsonl
```

* `gametime/download/advanced_instructions.zip` β€” unpacks to:

```
advanced_instructions/
β”œβ”€β”€ text/
β”‚   β”œβ”€β”€ *-dataset.json         # per-dataset JSON manifest(s) with timing tokens
β”œβ”€β”€ audios/
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   └── test/*.wav
β”œβ”€β”€ alignments/                 # per-audio alignment files 
β”‚   β”œβ”€β”€ <dataset_id>/
β”‚   β”‚   β”œβ”€β”€ <stem>.jsonl
```

Notes:

* Each ZIP in `gametime/download/` preserves the original source tree names (`basic_instructions/` or `advanced_instructions/`).

Download example (Hugging Face):

```python
from huggingface_hub import hf_hub_download
import os

path = hf_hub_download(
    repo_id="gametime-benchmark/gametime",
    repo_type="dataset",
    filename="download/basic_instructions.zip",
    revision="main",
    local_dir=".",
)
print("saved to:", path)
```

Unzip example:

```bash
unzip gametime/download/basic_instructions.zip
```

---

### 2️⃣ Optional β€” Stream from Hugging Face

```python
from datasets import load_dataset
import io
import soundfile as sf

# Load Basic train split
ds_basic = load_dataset("gametime-benchmark/gametime", "basic", split="test", streaming=True)
ex = next(iter(ds_basic))
buf = io.BytesIO(ex["audio_bytes"])
wav, sr = sf.read(buf, dtype="float32")
print(ex["id"], sr, len(wav), ex["text"])

# Load Advanced test split
ds_adv = load_dataset("gametime-benchmark/gametime", "advanced", split="test", streaming=True)
ex_adv = next(iter(ds_adv))
buf_adv = io.BytesIO(ex_adv["audio_bytes"])
wav_adv, sr_adv = sf.read(buf_adv, dtype="float32")
print(ex_adv["id"], sr_adv, len(wav_adv), ex_adv["text"])
````

* Works with **`streaming=True`** β€” no full download needed
* Requires only `soundfile` (libsndfile)

---

## πŸ“‘ Schema

Each Parquet row has:

| Column          | Type  | Description                                                    |
| --------------- | ----- | -------------------------------------------------------------- |
| `id`            | str   | e.g. `1-a-Sequence-Number/train/1-a-Sequence-Number-01-01.wav` |
| `category`      | str   | `"basic"` or `"advanced"`                                      |
| `dataset`       | str   | group name (e.g. `1-a-Sequence-Number`)                        |
| `split`         | str   | `train` or `test`                                              |
| `template_idx`  | str   | template index if available                                    |
| `item_idx`      | str   | item index if available                                        |
| `text`          | str   | reference transcription / prompt                               |
| `alignment`     | str   | alignment metadata                                             |
| `audio_bytes`   | bytes | raw WAV file bytes                                             |
| `audio_format`  | str   | `"wav"`                                                        |
| `sampling_rate` | int   | e.g., `16000`                                                  |

---

## πŸ“š Citation

If you use this dataset, please cite:

```
@article{chang2025gametime,
  title   = {Game-Time: Evaluating Temporal Dynamics in Spoken Language Models},
  author  = {Kai-Wei Chang and En-Pei Hu and Chun-Yi Kuan and Wenze Ren and Wei-Chih Chen and Guan-Ting Lin and Yu Tsao and Shao-Hua Sun and Hung-yi Lee and James Glass},
  year    = {2025},
  journal = {arXiv preprint arXiv:2509.26388},
  url     = {https://arxiv.org/abs/2509.26388}
}
```

---