Dataset Viewer
Auto-converted to Parquet Duplicate
filename
stringclasses
4 values
asset_type
stringclasses
1 value
dataset_name
float64
go_date
stringdate
2020-06-01 00:00:00
2025-06-01 00:00:00
edition
stringclasses
1 value
method
stringclasses
2 values
bytes
int64
40.7M
150M
sha256
stringclasses
4 values
note
float64
go-basic-2020-06-01.sbert.npy
go_embeddings
null
2020-06-01
basic
sbert
147,729,827
695324decb28e1cc3d09f73f2d9b12a5ef5d3e4b22f4ee874c7b3fe8b266250c
null
go-basic-2020-06-01.stargo.npy
go_embeddings
null
2020-06-01
basic
stargo
47,515,247
ba3c45a1f7c9c67313b2fa353582958954a2942f84df65122a26fa6b4d0ce549
null
go-basic-2025-06-01.sbert.npy
go_embeddings
null
2025-06-01
basic
sbert
150,047,561
ba258a87b601c08cfa8f851004a514ef18bd9dd18c0a11c01ac0a3b2ea7a5c3c
null
go-basic-2025-06-01.stargo.npy
go_embeddings
null
2025-06-01
basic
stargo
40,699,399
86367c3c4cb44e53ad86302a95f7508727808fddae885f0e23d392ebc3a2583b
null

stargo-embeddings

Dataset repository containing STAR-GO related embedding assets. The metadata.csv is loadable via datasets.load_dataset, while large binaries (e.g. .h5, .npy) are stored as downloadable files.

How to use

Load the metadata table:

from datasets import load_dataset

ds = load_dataset("<your-org-or-username>/<your-dataset-repo>")
print(ds)

Download the large binary assets referenced in the table with hf_hub_download.

Downloads last month
10