merlin / README.md
sathyaram's picture
Update README.md
9a69a55 verified
---
dataset_info:
- config_name: hi
features:
- name: Article Title
dtype: string
- name: Entity Name
dtype: string
- name: Wikidata ID
dtype: string
- name: English Wikipedia Title
dtype: string
- name: Image Name
dtype: image
splits:
- name: train
num_bytes: 51118097.546
num_examples: 1414
download_size: 29882467
dataset_size: 51118097.546
- config_name: id
features:
- name: Article Title
dtype: string
- name: Entity Name
dtype: string
- name: Wikidata ID
dtype: string
- name: English Wikipedia Title
dtype: string
- name: Image Name
dtype: image
splits:
- name: train
num_bytes: 52546850.192
num_examples: 1428
download_size: 32136412
dataset_size: 52546850.192
- config_name: ja
features:
- name: Article Title
dtype: string
- name: Entity Name
dtype: string
- name: Wikidata ID
dtype: string
- name: English Wikipedia Title
dtype: string
- name: Image Name
dtype: image
splits:
- name: train
num_bytes: 62643647.72
num_examples: 1720
download_size: 35163853
dataset_size: 62643647.72
- config_name: ta
features:
- name: Article Title
dtype: string
- name: Entity Name
dtype: string
- name: Wikidata ID
dtype: string
- name: English Wikipedia Title
dtype: string
- name: Image Name
dtype: image
splits:
- name: train
num_bytes: 44337774.542
num_examples: 1254
download_size: 30111872
dataset_size: 44337774.542
- config_name: vi
features:
- name: Article Title
dtype: string
- name: Entity Name
dtype: string
- name: Wikidata ID
dtype: string
- name: English Wikipedia Title
dtype: string
- name: Image Name
dtype: image
splits:
- name: train
num_bytes: 46272154.251
num_examples: 1343
download_size: 27669139
dataset_size: 46272154.251
configs:
- config_name: hi
data_files:
- split: train
path: hi/train-*
- config_name: id
data_files:
- split: train
path: id/train-*
- config_name: ja
data_files:
- split: train
path: ja/train-*
- config_name: ta
data_files:
- split: train
path: ta/train-*
- config_name: vi
data_files:
- split: train
path: vi/train-*
---
# MERLIN Dataset Card
## Dataset Description
### Overview
MERLIN (Multilingual Entity Recognition and Linking) is a test dataset for evaluating multilingual entity linking systems with multimodal inputs. It consists of **BBC news article titles** in multiple languages, each paired with an associated image and entity annotations. The dataset contains **7,287 entity mentions** linked to **2,480 unique Wikidata entities**, covering a wide range of categories (persons, locations, organizations, events, etc.).
### Supported Tasks
- **Multimodal Entity Linking** – disambiguating entity mentions using both text and images.
- **Cross-lingual Entity Linking** – linking mentions in one language to Wikidata entities regardless of language.
- **Named Entity Recognition** – identifying entity mentions in non-English news titles.
### Languages
- Hindi
- Japanese
- Indonesian
- Vietnamese
- Tamil
### Data Instances
Each instance in the dataset contains:
```json
{
"Article_Title": "बिहार: केंद्रीय मंत्री अश्विनी चौबे के बेटे अर्जित 'गिरफ्तार'",
"Entity_Name": "अश्विनी चौबे",
"Wikidata_ID": "Q16728021",
"English_Wikipedia_Title": "Ashwini Kumar Choubey",
"Image_Name": "<GCS_URL>"
}
```
### Data Fields
- **Article_Title**: News article title in its original language (string)
- **Entity_Name**: Entity mention in the same language (string)
- **Wikidata_ID**: Wikidata identifier for the entity (string)
- **English_Wikipedia_Title**: English Wikipedia page title (string)
- **Image_Name**: Associated image filename/URL (string)
### Data Splits
- The dataset contains **only a test split**, with **5,000 article titles** (1,000 per language).
---
## Dataset Creation
### Source Data
- Derived from the **M3LS dataset** (Verma et al., 2023), which was curated from **BBC News articles** spanning over a decade.
- Articles include categories like politics, sports, economy, science, and technology.
- Each article includes a **headline and an associated image**.
### Annotations
- **Tool used**: INCEpTION annotation platform.
- **Knowledge base**: Wikidata.
- **Process**:
- Annotators highlighted entity mentions in article titles and linked them to Wikidata entries.
- Each title was annotated by **three annotators**, with **majority voting** used for final selection.
- Annotators were recruited via **Prolific** with prescreening (required F1 ≥ 60% on English pilot tasks).
- **Agreement**: Average inter-annotator Cohen’s Kappa ≈ **0.83** (almost perfect agreement).
---
## Dataset Structure
### Example
```json
{
"Article_Title": "बिहार: केंद्रीय मंत्री अश्विनी चौबे के बेटे अर्जित 'गिरफ्तार'",
"Entity_Name": "अश्विनी चौबे",
"Wikidata_ID": "Q16728021",
"English_Wikipedia_Title": "Ashwini Kumar Choubey",
"Image_Name": "<GCS_URL>"
}
```
### Data Statistics
- **Total article titles**: 5,000
- **Total mentions**: 7,287
- **Unique entities**: 2,480
- **Languages covered**: Hindi, Japanese, Indonesian, Tamil, Vietnamese
- **Avg. words per title**: ~11.1
- **Unlinked mentions**: 1,243 (excluded from benchmark tasks)
---
## Curation Rationale
MERLIN was created to provide the **first multilingual multimodal entity linking benchmark**, addressing the gap where existing datasets are either monolingual or text-only. It enables studying how images can resolve ambiguity in entity mentions, especially in **low-resource languages**.
---
## Considerations for Using the Data
### Social Impact
- Supports **fairer multilingual NLP research**, by including low-resource languages (Tamil, Vietnamese).
- Encourages development of models robust to both text and images.
### Discussion of Biases
- All data is from **BBC News**, limiting genre diversity.
- Annotators’ **background knowledge** and **language proficiency** may introduce subtle biases.
- **Wikidata coverage bias**: entities absent from Wikidata were excluded (≈17% of mentions unlinked).
### Other Known Limitations
- Domain restriction (news only).
- Focused on entity mentions in headlines, not longer text.
- Baseline methods link to **Wikipedia titles** rather than pure **Wikidata QIDs**.
---
## Additional Information
### Dataset Curators
- Carnegie Mellon University (CMU)
- Defence Science and Technology Agency, Singapore
### Licensing Information
- The dataset is released for **research purposes only**, under the license specified in the [GitHub repository](https://github.com/rsathya4802/merlin).
### Citation Information
If you use MERLIN, cite:
**Ramamoorthy, S., Shah, V., Khanuja, S., Sheikh, Z., Jie, S., Chia, A., Chua, S., & Neubig, G. (2025). MERLIN: A Testbed for Multilingual Multimodal Entity Recognition and Linking. Transactions of the Association for Computational Linguistics.**
### Contributions
Community contributions can be made via the [MERLIN GitHub repo](https://github.com/rsathya4802/merlin).
---
## Related Work
This dataset can be benchmarked with:
- **mGENRE** (Multilingual Generative Entity Retrieval) [Repo](https://huggingface.co/facebook/mgenre-wiki)
- **GEMEL** (Generative Multimodal Entity Linking) [Repo](https://github.com/HITsz-TMG/GEMEL)