|
|
--- |
|
|
dataset_info: |
|
|
- config_name: hi |
|
|
features: |
|
|
- name: Article Title |
|
|
dtype: string |
|
|
- name: Entity Name |
|
|
dtype: string |
|
|
- name: Wikidata ID |
|
|
dtype: string |
|
|
- name: English Wikipedia Title |
|
|
dtype: string |
|
|
- name: Image Name |
|
|
dtype: image |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 51118097.546 |
|
|
num_examples: 1414 |
|
|
download_size: 29882467 |
|
|
dataset_size: 51118097.546 |
|
|
- config_name: id |
|
|
features: |
|
|
- name: Article Title |
|
|
dtype: string |
|
|
- name: Entity Name |
|
|
dtype: string |
|
|
- name: Wikidata ID |
|
|
dtype: string |
|
|
- name: English Wikipedia Title |
|
|
dtype: string |
|
|
- name: Image Name |
|
|
dtype: image |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 52546850.192 |
|
|
num_examples: 1428 |
|
|
download_size: 32136412 |
|
|
dataset_size: 52546850.192 |
|
|
- config_name: ja |
|
|
features: |
|
|
- name: Article Title |
|
|
dtype: string |
|
|
- name: Entity Name |
|
|
dtype: string |
|
|
- name: Wikidata ID |
|
|
dtype: string |
|
|
- name: English Wikipedia Title |
|
|
dtype: string |
|
|
- name: Image Name |
|
|
dtype: image |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 62643647.72 |
|
|
num_examples: 1720 |
|
|
download_size: 35163853 |
|
|
dataset_size: 62643647.72 |
|
|
- config_name: ta |
|
|
features: |
|
|
- name: Article Title |
|
|
dtype: string |
|
|
- name: Entity Name |
|
|
dtype: string |
|
|
- name: Wikidata ID |
|
|
dtype: string |
|
|
- name: English Wikipedia Title |
|
|
dtype: string |
|
|
- name: Image Name |
|
|
dtype: image |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 44337774.542 |
|
|
num_examples: 1254 |
|
|
download_size: 30111872 |
|
|
dataset_size: 44337774.542 |
|
|
- config_name: vi |
|
|
features: |
|
|
- name: Article Title |
|
|
dtype: string |
|
|
- name: Entity Name |
|
|
dtype: string |
|
|
- name: Wikidata ID |
|
|
dtype: string |
|
|
- name: English Wikipedia Title |
|
|
dtype: string |
|
|
- name: Image Name |
|
|
dtype: image |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 46272154.251 |
|
|
num_examples: 1343 |
|
|
download_size: 27669139 |
|
|
dataset_size: 46272154.251 |
|
|
configs: |
|
|
- config_name: hi |
|
|
data_files: |
|
|
- split: train |
|
|
path: hi/train-* |
|
|
- config_name: id |
|
|
data_files: |
|
|
- split: train |
|
|
path: id/train-* |
|
|
- config_name: ja |
|
|
data_files: |
|
|
- split: train |
|
|
path: ja/train-* |
|
|
- config_name: ta |
|
|
data_files: |
|
|
- split: train |
|
|
path: ta/train-* |
|
|
- config_name: vi |
|
|
data_files: |
|
|
- split: train |
|
|
path: vi/train-* |
|
|
--- |
|
|
|
|
|
# MERLIN Dataset Card |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
### Overview |
|
|
MERLIN (Multilingual Entity Recognition and Linking) is a test dataset for evaluating multilingual entity linking systems with multimodal inputs. It consists of **BBC news article titles** in multiple languages, each paired with an associated image and entity annotations. The dataset contains **7,287 entity mentions** linked to **2,480 unique Wikidata entities**, covering a wide range of categories (persons, locations, organizations, events, etc.). |
|
|
|
|
|
### Supported Tasks |
|
|
- **Multimodal Entity Linking** – disambiguating entity mentions using both text and images. |
|
|
- **Cross-lingual Entity Linking** – linking mentions in one language to Wikidata entities regardless of language. |
|
|
- **Named Entity Recognition** – identifying entity mentions in non-English news titles. |
|
|
|
|
|
### Languages |
|
|
- Hindi |
|
|
- Japanese |
|
|
- Indonesian |
|
|
- Vietnamese |
|
|
- Tamil |
|
|
|
|
|
### Data Instances |
|
|
Each instance in the dataset contains: |
|
|
|
|
|
```json |
|
|
{ |
|
|
"Article_Title": "बिहार: केंद्रीय मंत्री अश्विनी चौबे के बेटे अर्जित 'गिरफ्तार'", |
|
|
"Entity_Name": "अश्विनी चौबे", |
|
|
"Wikidata_ID": "Q16728021", |
|
|
"English_Wikipedia_Title": "Ashwini Kumar Choubey", |
|
|
"Image_Name": "<GCS_URL>" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Data Fields |
|
|
- **Article_Title**: News article title in its original language (string) |
|
|
- **Entity_Name**: Entity mention in the same language (string) |
|
|
- **Wikidata_ID**: Wikidata identifier for the entity (string) |
|
|
- **English_Wikipedia_Title**: English Wikipedia page title (string) |
|
|
- **Image_Name**: Associated image filename/URL (string) |
|
|
|
|
|
### Data Splits |
|
|
- The dataset contains **only a test split**, with **5,000 article titles** (1,000 per language). |
|
|
|
|
|
--- |
|
|
|
|
|
## Dataset Creation |
|
|
|
|
|
### Source Data |
|
|
- Derived from the **M3LS dataset** (Verma et al., 2023), which was curated from **BBC News articles** spanning over a decade. |
|
|
- Articles include categories like politics, sports, economy, science, and technology. |
|
|
- Each article includes a **headline and an associated image**. |
|
|
|
|
|
### Annotations |
|
|
- **Tool used**: INCEpTION annotation platform. |
|
|
- **Knowledge base**: Wikidata. |
|
|
- **Process**: |
|
|
- Annotators highlighted entity mentions in article titles and linked them to Wikidata entries. |
|
|
- Each title was annotated by **three annotators**, with **majority voting** used for final selection. |
|
|
- Annotators were recruited via **Prolific** with prescreening (required F1 ≥ 60% on English pilot tasks). |
|
|
- **Agreement**: Average inter-annotator Cohen’s Kappa ≈ **0.83** (almost perfect agreement). |
|
|
|
|
|
--- |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Example |
|
|
```json |
|
|
{ |
|
|
"Article_Title": "बिहार: केंद्रीय मंत्री अश्विनी चौबे के बेटे अर्जित 'गिरफ्तार'", |
|
|
"Entity_Name": "अश्विनी चौबे", |
|
|
"Wikidata_ID": "Q16728021", |
|
|
"English_Wikipedia_Title": "Ashwini Kumar Choubey", |
|
|
"Image_Name": "<GCS_URL>" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Data Statistics |
|
|
- **Total article titles**: 5,000 |
|
|
- **Total mentions**: 7,287 |
|
|
- **Unique entities**: 2,480 |
|
|
- **Languages covered**: Hindi, Japanese, Indonesian, Tamil, Vietnamese |
|
|
- **Avg. words per title**: ~11.1 |
|
|
- **Unlinked mentions**: 1,243 (excluded from benchmark tasks) |
|
|
|
|
|
--- |
|
|
|
|
|
## Curation Rationale |
|
|
MERLIN was created to provide the **first multilingual multimodal entity linking benchmark**, addressing the gap where existing datasets are either monolingual or text-only. It enables studying how images can resolve ambiguity in entity mentions, especially in **low-resource languages**. |
|
|
|
|
|
--- |
|
|
|
|
|
## Considerations for Using the Data |
|
|
|
|
|
### Social Impact |
|
|
- Supports **fairer multilingual NLP research**, by including low-resource languages (Tamil, Vietnamese). |
|
|
- Encourages development of models robust to both text and images. |
|
|
|
|
|
### Discussion of Biases |
|
|
- All data is from **BBC News**, limiting genre diversity. |
|
|
- Annotators’ **background knowledge** and **language proficiency** may introduce subtle biases. |
|
|
- **Wikidata coverage bias**: entities absent from Wikidata were excluded (≈17% of mentions unlinked). |
|
|
|
|
|
### Other Known Limitations |
|
|
- Domain restriction (news only). |
|
|
- Focused on entity mentions in headlines, not longer text. |
|
|
- Baseline methods link to **Wikipedia titles** rather than pure **Wikidata QIDs**. |
|
|
|
|
|
--- |
|
|
|
|
|
## Additional Information |
|
|
|
|
|
### Dataset Curators |
|
|
- Carnegie Mellon University (CMU) |
|
|
- Defence Science and Technology Agency, Singapore |
|
|
|
|
|
### Licensing Information |
|
|
- The dataset is released for **research purposes only**, under the license specified in the [GitHub repository](https://github.com/rsathya4802/merlin). |
|
|
|
|
|
### Citation Information |
|
|
If you use MERLIN, cite: |
|
|
**Ramamoorthy, S., Shah, V., Khanuja, S., Sheikh, Z., Jie, S., Chia, A., Chua, S., & Neubig, G. (2025). MERLIN: A Testbed for Multilingual Multimodal Entity Recognition and Linking. Transactions of the Association for Computational Linguistics.** |
|
|
|
|
|
### Contributions |
|
|
Community contributions can be made via the [MERLIN GitHub repo](https://github.com/rsathya4802/merlin). |
|
|
|
|
|
--- |
|
|
|
|
|
## Related Work |
|
|
This dataset can be benchmarked with: |
|
|
- **mGENRE** (Multilingual Generative Entity Retrieval) [Repo](https://huggingface.co/facebook/mgenre-wiki) |
|
|
- **GEMEL** (Generative Multimodal Entity Linking) [Repo](https://github.com/HITsz-TMG/GEMEL) |
|
|
|