Datasets:

Modalities:
Image
Formats:
parquet
Libraries:
Datasets
Dask
License:

You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Dataset MedPlanktonSet - A dataset of labeled IFCB images from the Mediterranean Sea

[More Information Needed]

Details

  • train split means (RGB): [0.6551923469316225]
  • train split standard deviations (RGB): [0.08689574482674113]

Samples per class for split train

0: Akashiwo_sanguinea                                    18.00
1: Alexandrium_spp                                       21.00
2: Amphidinium_spp                                       16.00
3: Appendicularia                                        6.00
4: Asterionellopsis_cf._glacialis                       β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡ 5546.00
5: Asteromphalus_sarcophagus                             26.00
6: Asteromphalus_spp                                     22.00
7: Azadinium_caudatum                                    5.00
8: Bacteriastrum_spp                                    β–‡ 449.00
9: Calciopappus_caudatus                                 7.00
10: Calciosolenia_brasiliensis                          β–‡ 371.00
11: Centric_diatoms                                     β–‡β–‡β–‡β–‡β–‡ 3098.00
12: Cerataulina_pelagica                                β–‡ 956.00
13: Ceratoperidinium_margalefii                          1.00
14: Chaetoceros_anastomonsans                            15.00
15: Chaetoceros_curvisetus_Chaetoceros_pseudocurvisetus β–‡β–‡β–‡ 1690.00
16: Chaetoceros_danicus                                 β–‡ 880.00
17: Chaetoceros_decipiens                                248.00
18: Chaetoceros_diversus                                 6.00
19: Chaetoceros_peruvianus                              β–‡ 540.00
20: Chaetoceros_protuberans_Chaetoceros_didymus         β–‡ 881.00
21: Chaetoceros_socialis                                 40.00
22: Chaetoceros_spp                                     β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡β–‡ 12695.00
23: Chaetoceros_tortissimus                              87.00
24: Chrysochromulina_lanceolata                         β–‡ 670.00
25: Chrysochromulina_parkeae                            β–‡ 445.00
26: Ciliates                                            β–‡ 928.00
27: Cladopyxis_cf._brachiolata                           1.00
28: Copepod_copepodites                                  4.00
29: Copepod_eggs                                         1.00
30: Copepod_nauplii                                      94.00
31: Corythodinium_constrictum                            7.00
32: Corythodinium_milneri                                5.00
33: Cryptophyceae                                       β–‡β–‡β–‡ 2022.00
34: Cylindrotheca_closterium-like                       β–‡ 722.00
35: Dactyliosolen_blavyanus                             β–‡β–‡ 1101.00
36: Dactyliosolen_fragilissimus                          220.00
37: Dictyocha_fibula                                    β–‡ 577.00
38: Dictyocysta_spp._Codonaria_spp                       18.00
39: Dinobryon_coalescens                                β–‡ 838.00
40: Dinophysis_caudata                                   24.00
41: Dinophysis_parva                                     8.00
42: Dinophysis_sacculus                                  181.00
43: Dinophysis_spp                                      β–‡ 443.00
44: Dinophysis_tripos                                    1.00
45: Discosphaera_tubifera                                18.00
46: Eucampia_cornuta                                    β–‡β–‡ 1170.00
47: Euglenophyceae                                       162.00
48: Gonyaulax_polygramma                                 8.00
49: Gonyaulax_spp                                        14.00
50: Guinardia_flaccida                                   32.00
51: Guinardia_striata_Dactyliosolen_phuketensis         β–‡β–‡ 1469.00
52: Gyrodinium_spirale_Gyrodinium_fusiforme              39.00
53: Haslea_silbo                                        β–‡β–‡β–‡β–‡ 2492.00
54: Helicotheca_tamesis                                  4.00
55: Hemiaulus_hauckii_Hemiaulus_sinensis                β–‡β–‡β–‡β–‡ 2651.00
56: Heterocapsa_niei-like                                221.00
57: Kapelodinium_vestifici                               103.00
58: Karenia_papilionacea                                 3.00
59: Karenia_spp                                          133.00
60: Lauderia_annulata                                   β–‡β–‡ 1475.00
61: Leptocylindrus_spp                                  β–‡β–‡β–‡β–‡β–‡β–‡ 4087.00
62: Licmophora_spp                                       31.00
63: Lioloma_pacificum                                    5.00
64: Lithodesmium_variabile                              β–‡ 456.00
65: Meringosphaera_mediterranea                         β–‡ 698.00
66: Mesodinium_spp                                      β–‡β–‡ 1016.00
67: Naked_dinoflagellates                                300.00
68: Neobrightwellia_alternans                            8.00
69: Octactis_octonaria                                   14.00
70: Oltmannsiellopsis_viridis                            3.00
71: Ophiaster_spp                                        14.00
72: Ornithocercus_spp._Histioneis_spp                    7.00
73: Oxytoxum_cf._caudatum                                23.00
74: Oxytoxum_cf._scolopax                                7.00
75: Oxytoxum_cf._variabile                               124.00
76: Oxytoxum_spp                                         12.00
77: Pennate_diatoms                                     β–‡ 790.00
78: Phaeocystis_jahnii                                  β–‡ 630.00
79: Phalacroma_oxytoxoides                               1.00
80: Phalacroma_spp                                       5.00
81: Plagiotropis_spp                                     267.00
82: Pleurosigma spp._Gyrosigma_spp                       87.00
83: Podolampas_palmipes                                  1.00
84: Polykrikos_kofoidii                                  4.00
85: Proboscia_spp._Rhizosolenia_spp                     β–‡β–‡β–‡ 1877.00
86: Prorocentrum_cf._gracile                             204.00
87: Prorocentrum_redfieldii                             β–‡β–‡β–‡ 1694.00
88: Protoceratium_reticulatum                            2.00
89: Protoperidinium_cf._divergens                        12.00
90: Protoperidinium_diabolus                             27.00
91: Pseliodinium_fusus                                   42.00
92: Pseudo-nitzschia_spp._2_cells                       β–‡β–‡β–‡ 1952.00
93: Pseudo-nitzschia_spp._3_cells                       β–‡β–‡ 1149.00
94: Pseudo-nitzschia_spp._4_cells                       β–‡ 505.00
95: Pseudo-nitzschia_spp._5_cells                        132.00
96: Pseudo-nitzschia_spp._6_cells                        22.00
97: Pseudo-nitzschia_spp._7_cells                        3.00
98: Pseudo-nitzschia_spp._single_cell                   β–‡ 955.00
99: Pseudosolenia_calcar-avis                            2.00
100: Pterosperma_spp                                     12.00
101: Pyramimonas_spp                                    β–‡β–‡ 1383.00
102: Pyrocystis_cf._lunula                               3.00
103: Pyrophacus_horologium                               18.00
104: Radiolaria                                          86.00
105: Rhabdosphaera_clavigera                             146.00
106: Scrippsiella_acuminata_like                        β–‡β–‡ 1395.00
107: Scyphosphaera_apsteinii                             1.00
108: Skeletonema_menzelii                               β–‡ 975.00
109: Skeletonema_pseudocostatum_Skeletonema_tropicum     78.00
110: Sourniaea_diacantha                                 5.00
111: Syracosphaera_pulchra                               291.00
112: Tenuicylindrus_belgicus                            β–‡β–‡β–‡ 2221.00
113: Thalassionema_spp                                  β–‡β–‡β–‡β–‡ 2945.00
114: Thalassiosira_gravida                              β–‡β–‡β–‡β–‡ 2412.00
115: Thalassiosira_spp                                  β–‡ 814.00
116: Tiarina_spp                                         14.00
117: Tintinnids                                          196.00
118: Torodinium_spp                                      79.00
119: Trachymedusae                                       1.00
120: Trieres_mobiliensis                                β–‡ 631.00
121: Tripos_arietinus                                    1.00
122: Tripos_azoricus                                     1.00
123: Tripos_cf._minutus                                  15.00
124: Tripos_concilians                                   1.00
125: Tripos_contortus                                    1.00
126: Tripos_declinatus                                   2.00
127: Tripos_euarcuatus                                   1.00
128: Tripos_furca                                        170.00
129: Tripos_fusus                                        103.00
130: Tripos_horridus                                     1.00
131: Tripos_macroceros                                   1.00
132: Tripos_muelleri-like                                16.00
133: Tripos_pentagonus                                   2.00
134: Tripos_spp                                          9.00
135: Tripos_symmetricus                                  1.00
136: Tripos_teres                                        96.00
137: Umbilicosphaera_sibogae                             14.00
138: Warnowia_polyphemus                                 34.00

Reference

Mente MS & Houliez E, Scalco E., Roselli L., & Sarno D. (2025). MedPlanktonSet - A dataset of labeled IFCB images from the Mediterranean Sea [Data set]. Stazione Zoologica Anton Dohrn. https://doi.org/10.5281/zenodo.15471023

BibTEX

@article{dataset:medplanktonset,
    author       = {Mente MS \& Houliez E and
                    Scalco E. and
                    Roselli L. and
                    Sarno D.},
    title        = {MedPlanktonSet -  A dataset of labeled IFCB images
                     from the Mediterranean Sea
                    },
    month        = jun,
    year         = 2025,
    publisher    = {Stazione Zoologica Anton Dohrn},
    doi          = {10.5281/zenodo.15471023},
    url          = {https://doi.org/10.5281/zenodo.15471023},
  }

Usage

from datasets import load_dataset

dataset = load_dataset("project-oceania/medplanktonset")
Downloads last month
3

Collection including project-oceania/medplanktonset