Plankton images datasets
Collection
12 items
β’
Updated
Plankton images annotated into 35 classes over 17900 images of zooplankton and large phytoplankton colonies, detected in Lake Greifensee (Switzerland) with the Dual Scripps Plankton Camera.
Samples per class for split train
0: aphanizomenon ββββ 164.00
1: asplanchna βββββββββ 410.00
2: asterionella ββββββββββββββββ 735.00
3: bosmina β 51.00
4: brachionus ββ 93.00
5: ceratium ββββββββββββ 558.00
6: chaoborus 7.00
7: conochilus ββββ 189.00
8: copepod_skins β 24.00
9: cyclops βββββββββββββ 591.00
10: daphnia βββββββββββ 510.00
11: daphnia_skins β 39.00
12: diaphanosoma βββββββββββββββββ 769.00
13: diatom_chain 12.00
14: dinobryon βββββββββββββββββββββββββββββββββββββββββββββββββββ 2366.00
15: dirt ββ 91.00
16: eudiaptomus ββββββββ 375.00
17: filament ββββββ 276.00
18: fish βββ 155.00
19: fragilaria βββββ 215.00
20: hydra 15.00
21: kellicottia ββββββββ 375.00
22: keratella_cochlearis ββ 84.00
23: keratella_quadrata ββββββ 285.00
24: leptodora βββ 144.00
25: maybe_cyano βββββββββββββββββββββ 958.00
26: nauplius βββββββββββββββββββββββ 1044.00
27: paradileptus ββββββ 291.00
28: polyarthra β 57.00
29: rotifers ββββββββββββ 535.00
30: synchaeta ββ 90.00
31: trichocerca ββββ 174.00
32: unknown ββββ 176.00
33: unknown_plankton β 49.00
34: uroglena ββββββββββββββ 652.00
Samples per class for split validation
0: aphanizomenon βββ 33.00
1: asplanchna βββββββββββ 103.00
2: asterionella ββββββββββββββββ 154.00
3: bosmina ββ 15.00
4: brachionus ββ 23.00
5: ceratium βββββββββββββ 126.00
6: chaoborus 1.00
7: conochilus βββ 33.00
8: copepod_skins 3.00
9: cyclops βββββββββββββ 127.00
10: daphnia ββββββββββ 99.00
11: daphnia_skins 2.00
12: diaphanosoma ββββββββββββββββ 159.00
13: diatom_chain 2.00
14: dinobryon ββββββββββββββββββββββββββββββββββββββββββββββββββββ 510.00
15: dirt ββ 18.00
16: eudiaptomus βββββββββ 87.00
17: filament βββββββ 64.00
18: fish βββ 29.00
19: fragilaria ββββββ 56.00
20: hydra 2.00
21: kellicottia ββββββββ 79.00
22: keratella_cochlearis ββ 15.00
23: keratella_quadrata βββββββ 70.00
24: leptodora βββ 26.00
25: maybe_cyano βββββββββββββββββββββ 202.00
26: nauplius βββββββββββββββββββββββ 222.00
27: paradileptus βββββββ 72.00
28: polyarthra β 10.00
29: rotifers ββββββββββ 100.00
30: synchaeta ββ 23.00
31: trichocerca ββββ 44.00
32: unknown βββ 26.00
33: unknown_plankton β 11.00
34: uroglena βββββββββββββββ 145.00
Samples per class for split test
0: aphanizomenon βββ 28.00
1: asplanchna βββββββββββ 93.00
2: asterionella βββββββββββββββββββ 165.00
3: bosmina ββ 14.00
4: brachionus ββ 21.00
5: ceratium βββββββββββββββ 130.00
6: chaoborus 2.00
7: conochilus βββββ 42.00
8: copepod_skins β 6.00
9: cyclops βββββββββββββββββ 148.00
10: daphnia βββββββββββββ 112.00
11: daphnia_skins β 5.00
12: diaphanosoma βββββββββββββββββββ 161.00
13: diatom_chain 3.00
14: dinobryon ββββββββββββββββββββββββββββββββββββββββββββββββββββ 446.00
15: dirt βββ 22.00
16: eudiaptomus βββββββββ 75.00
17: filament ββββββββ 65.00
18: fish ββββ 38.00
19: fragilaria ββββ 35.00
20: hydra 1.00
21: kellicottia ββββββββ 65.00
22: keratella_cochlearis ββ 13.00
23: keratella_quadrata ββββββββ 65.00
24: leptodora ββββ 33.00
25: maybe_cyano ββββββββββββββββββββββββ 204.00
26: nauplius ββββββββββββββββββββββββββββ 241.00
27: paradileptus βββββββ 61.00
28: polyarthra β 12.00
29: rotifers βββββββββββββ 110.00
30: synchaeta βββ 29.00
31: trichocerca ββββ 37.00
32: unknown βββββ 43.00
33: unknown_plankton β 11.00
34: uroglena ββββββββββββββββββ 156.00
Kyathanahally, S. P., Hardeman, T., Merz, E., Bulas, T., Reyes, M., Isles, P., Pomati, F., & Baity-Jesi, M. (2021). Deep learning classification of lake zooplankton. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.746297
@article{dataset:zoolake,
title = {Deep learning classification of lake zooplankton},
author = {Kyathanahally, S.P. and Hardeman, T. and Merz, E. and Bulas, T. and Reyes, M. and Isles, P. and Pomati, F. and Baity-Jesi, M.},
journal = {Frontiers in Microbiology},
volume = {12},
year = {2021},
doi = {10.3389/fmicb.2021.746297},
url = {https://www.frontiersin.org/articles/10.3389/fmicb.2021.746297}
}
from datasets import load_dataset
dataset = load_dataset("project-oceania/zoolake")