Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'test' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    UnicodeDecodeError
Message:      'utf-8' codec can't decode byte 0xb0 in position 0: invalid start byte
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/csv/csv.py", line 188, in _generate_tables
                  csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs)
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/streaming.py", line 73, in wrapper
                  return function(*args, download_config=download_config, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 1199, in xpandas_read_csv
                  return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 1026, in read_csv
                  return _read(filepath_or_buffer, kwds)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 620, in _read
                  parser = TextFileReader(filepath_or_buffer, **kwds)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 1620, in __init__
                  self._engine = self._make_engine(f, self.engine)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/readers.py", line 1898, in _make_engine
                  return mapping[engine](f, **self.options)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 93, in __init__
                  self._reader = parsers.TextReader(src, **kwds)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pandas/_libs/parsers.pyx", line 574, in pandas._libs.parsers.TextReader.__cinit__
                File "pandas/_libs/parsers.pyx", line 663, in pandas._libs.parsers.TextReader._get_header
                File "pandas/_libs/parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "pandas/_libs/parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "pandas/_libs/parsers.pyx", line 2053, in pandas._libs.parsers.raise_parser_error
                File "<frozen codecs>", line 322, in decode
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb0 in position 0: invalid start byte

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset Card for DreamerBench

Dataset Summary

DreamerBench is a large-scale dataset designed for training and evaluating World Models in robotics applications. Unlike standard visual-only datasets, DreamerBench explicitly focuses on physical interaction dynamics, specifically friction and contact data.

The dataset is generated using Project Chrono (https://projectchrono.org/), simulating diverse robotic interaction scenarios where precise modeling of physical forces is critical. It includes pre-computed encodings to facilitate efficient training of latent dynamics models.

Key features:

  • Physical Fidelity: detailed ground-truth annotations for coefficient of friction, contact forces, and slip.
  • Multi-Modal: Contains visual observations (RGB/Depth), proprioceptive states, and explicit physics parameters.
  • World Model Ready: Structured to support next-step prediction and imaginary rollout training (Dreamer-style architectures).

Supported Tasks and Leaderboards

  • World Modeling / Dynamics Learning: Training models to predict future states ($s_{t+1}$) given current state ($s_t$) and action ($a_t$).
  • Offline Reinforcement Learning: Learning policies from the provided simulator trajectories without active environmental interaction.
  • Sim-to-Real Adaptation: Using the varied friction/contact parameters to train robust policies that generalize to real-world physics.

Dataset Structure

Data Instances

Each instance in the dataset represents a trajectory or episode of a robot interacting with the environment.

Example structure (JSON/Parquet format):

{
  "episode_id": "traj_001",
  "steps": 1000,
  "observations": {
    "rgb": [Array of (1000, 64, 64, 3) images],
    "depth": [Array of (1000, 64, 64, 1) images],
    "proprioception": [Array of joint angles/velocities]
  },
  "actions": [Array of control inputs],
  "rewards": [Array of float scalars],
  "physics_data": {
    "contact_forces": [Array of 3D force vectors],
    "friction_coefficient": 0.8,
    "contact_detected": [Binary array]
  },
  "encoding": [Pre-computed latent vectors, e.g., VAE or RSSM states]
}

Example scenarios:

Visual Data Samples

Examples of 3 scenarios across 4 different camera angles (256x256).

Scenario Ego Side 1 Side 2 Contact Splat
flashlight-box
flashlight-coca
waterbottle-coca
Downloads last month
141